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Abstract

It will be shown thal some important characteristics of stationary operating fuel cells can be understoed by analyzing a simple basic
isothermal cell model. The model is independent of the type of fuel ccll and will be used for a general description of cells supplied with
gaseous fuel and oxidant. An example is also given in which the resuits are compared with published data of a bench-scale motten carbonate
fuel ceil (MCFC). Simple expressions relating the cell voltage, celi current and fuel utilization are derived and found to be accurate despite
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shown that a non-homogenecus current dlstnbuuon yields an extra overpotential in the order of 10 mV for an MCFC.
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1. Introduction

Engineering aspects often dominate the setup of fuel cell
models and make them rather complicated. Therefore, most
fuel ce!l models are not suitable for an analytical approach
and require extensive computer softwarc for generating
numerical results. In addition, the dependence of fuel cell
behaviour on the model parameters is often difficult 10
express on the basis of numerical results only. The great
advantage of an anatytical model is that relations between the
variables can be made clear in a direct way and that fuel cell
performance can be determined by the derivation of analytical
expressions. On the other hand, simple mathematical analyses
are only possible for highly idealized models. Nevertheless,
analytical results arc important in the explanation of results
obtained from complicated numerical models as well as of
empirical relations obtained from measurements. So, despite
their limitations, analytical results contribute to a better
understanding of fuel cell behaviour.

In this paper, a simple basic fuel cell inodel is intreduced
for arectangular flat plate fuel cell. The objective of the *basic
model’ is to provide insight in the elementary characteristics
of stationary operating, isothermal fuel cells, using simple
mathematics. In the *basic model’ a fuel cell is described as
an equivalent electrical circuit (see Fig. 1}. This approach is
also used in Refs. {1-3] and will be elaborated into more
detail in this paper. Special attention will be paid to a linear
relation between the cell voltage, the total fuel utilization and
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Fig. 1. Representation of a fuel cell as an equivalent electrical circuit.

the cell current. Although measurements on a bench-scale
molten carbonate fuel cell (MCFC) confirm this double lin-
ear relation {1], a detailed derivation of the relation is not
given in any of the references. In this paper, a detailed deri-
vation will be given and it will be shown that more accurate
results arc obtained if the relation is slightly adapted.

Table 1 shows the list of assumptions that underlie the
setup of the ‘basic model’. Oxidant utilization can be taken
intoaccount in a similar way as fuel utilization (see Appendix
A), but will he neglected for reasons of simplicity. Due to
the assumptions 5 and 6, the setup of the ‘basic model” is
possible without paying special attention to the theory of
chemical kinetics. Despite the assumptions listed in Table 1,
the *basic modcl’ can, in most cases, only be ‘solved” by
using a numerical method. However, it will be shiown that
linearization of the Nernst potential in the ‘basic model’
yields an ‘analytical cell model’, suitable for the derivation
of analytical expressions that are in good agreement with
numerical cc tons and
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Table t
Overview of the model assumptions

Stationary fuel cell { tirae independent)

Isothermal fuet cetl

Large oxidant flow {negligible oxidan! utilization)

Changes in fuel position are signi in the dircclion of the

cell outlet only

5¢a)  Local overpotential depends linearly on the local current density
Ihrough a quasi-ohmic resistance, 7

5(by  Quasi-ohmic resistance, r, is independent of position

6 Al reactions in the gas phase are in equilibrium

7 Nernst p ial is idered to be ind 1

pressure gradients

e

of hydrostatic

2. Basic isothermal fuel cell model

The total anode surface of the cell is given by BL, where
L and B are, respectively, the length and the width of the cell.
The approach will be one-dimensional, which means that all
variables are considered as a function of the X-coordinate
only, i.e. the horizontal distance (Fig. 1) between a cross
section of the cell and the cell inlet.

Changes in fuel and oxidant composition occur due 1o the
clectrochemical reactions that are taking place inside the cell.
Hence, the local equilibrium potential, as given by Nernst
law, depends on the local composition of fuel and oxidant.
The local overpotential n(X) is defined as the difference
between the local equilibrium potential (V,,) and the cell
potential ( V) at which the currentis delivered. Assumption
5(a) in Table 1 leads to

NX) =V (X) — Voo =rilX) (1)

This linear current-voltage relation is not evident from a
theoretical point of view. The quasi-ohmic resistance, r, does
not only account for ohmic losses, but also for voltage losses
due to concentration and activation polarization. Eq. (1) is
realistic for an MCFC at normal operation, because experi-
mental current-voltage relations arc almost perfectly linear
for this type of cell (sec e.g. [11). But for low-temperature
fuel cells a strong decrease in cell vollage is observed at low
current densities, usually ascribed to the activation polariza-
tion. Furthermare, at high current densities diffusion limita-
tions occur {4.5). Nevertheless, the current-voltage relation
of a low-temperature cell can be lincarized accurately for
intermediate current densities, yiclding an expression
for p(X) as V,, +ri(X). Rewriting this cxpression gives
Eq. (1) with an adapted value for V,,(X). Hence, for low-
temperature cells, the initial value V() must be set equal
i0 the open-circuit voltage (OCV) minus the correction term
Vir:
Note that the resistance of the current collectors is assumed
10 be negligible in the definition of the overpotential 7 in
Eqg. (1), so that the voltage between two current collectors is
equal to V., throughout the cetl. For reasons of simplicity,
we assume also that the quasi-ohmic resistance is uniform,
i.c. r(X) =r for all X. In most cases, the quasi-ohmic resis-
tance depends on temperature mainly and, hence, this sim-

plification is a direct consequence of the assumption that the
fucl cell is isothermal. In general, electrode polarization
depends also on the local gas compositions, thus on X. But
in this paper we will also neglect this influence, which is often
of sccondary importance.

Below we will introduce an ordinary differential equation
(ODE) for the fuel utilization, u, based on the expression for
the overpotential given in Eq. (1). The equilibrium potential
Veq will appear in this ODE as a function of 4 and not as a
function of X. In fact, the cquilibrium potential depends
mainly on the local fuel and oxidant composition and is prac-
tically independent of the small total pressure gradients in the
process flows [4]. Neglecting hydrostatic pressure gradients
it is possible to determine the composition of the process
fiows as a function of the fuel utilization, «. The Nernst
equation gives thus the local equilibrium potential in terms
of the utilization #(X).

For reasons of simplicity, we assume a large flow of oxi-
dant being considered as homogeneous. Thus, we have to
take into account the utilization of fuel only. It is convenient
to represent the maximum amount of current, that is produced
in the hypothetical situation of complete fuel utilization, by
1. which we will call the ‘equivalent input currcat’. Note
that 1, can be calculated from the gas composition and the
gas flow rate, using Faraday’s law. The delivered current is
denoted by 1, and will be smaller than the equivalent input
current /.. The ratio 1,,,/1,, gives the total fuel utitization
and, in an analogous way, the local fuel utilization u(X) is
defined as the fraction of 1, generated in the area between the
cell inlet and position X

x
z«(x)=;qji(g) 4 (O=usl) )
™o

where B is the width of the cell. The expression for the
overpotential in Eq. (1) can be used to eliminate the local
current density i in Eq. (2). Differentiating the result with
respect to X and writing V,,,(u) instead of V,,(X) we obtain
the following ordinary differential equation

du

x (0<Xx<L) 3)

B

rlm(ch(") Vean)s
From the definition of the utilization « in Eq. (2) it follows
that u is zero at the cell inlet, i.e. for X=0. Apart from this
initial value for u, the ODE must be supplied with either a
suitable end value for « or a value for V... Choosing the first
possibility, i.c. imposing an end value «, for the utilization,
we have to solve Eq. (3) for u(X) and V., taking into
account the boundary conditions

w(0)=0, u(L)=u, (0<u,<1) (O3]

In order to facilitate the evaluation of the results, it is con-
venient to scale Eqs. (3) and (4). To this end, we succes-
sively relate the equivalent input current I, to the cell surface
BL and the space coordinate X to the cell leagth L. The scaled
variables are denoted by i, and x respectively
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f. == <
=gy (0<x<1) (5)

X
y XK=

L
Scaling Eqgs. (3) and (4), by using these scaled variables,
we obtain the following boundary value problemn (BVP)

du

1
‘—=;;-(Vw(u) ~Ven), (0<x<1)

dx

1(0)=0, w(y=1w,=1,, /L,

In this BVP the first-order differcntial equation for the utili-
zation is supplied with two boundary conditions. This implies
that the solution of the BVP is twofold, i.c. is given by the
set (u(x), V). This solution depends ..n the product ri;,
rather than on the individual data for r and i,,. However, the
local current density does depend on these individual data,
e.g. the average current density over the whole cell is equal
10 £l

Once the BVP has been solved, the local current density i
can be calculated from

i(x)= (x), (0<x<1) (6)

- ‘ll\dx
Note that the individual values for V,,,(0) and V,, are irrel-
evant, because only the overpotential (V(u)— Vi)
appears in the BVP. Hence, the difference V, (0) V. is
important; it is this difference rather than the individual terms
that influence the local current density { and the local fuel
utilization u.

In this paper, the *basic model’ is only used to calculate
the electrical variables, i.e. the current density, i, the fuel
utilization, u(x), and the cell voltage V.. We distinguish
this set of variables from the set of so-called hydrodynamical
variables. In fluid dynamics the term hydrodynamical varia-
bles refers to the hydrostatic pressure, the fluid density and
the velocity of a fivid flow. In afuel cell model, the calculation
of hydrodynamical variables requires a detailed description
of the confi of the gas ch 1s. However, as long as
sufficient gas flow is allowed for, these details appear to be
irrelevant for the calculation of the vasiables i, u and V.,
within the ‘basic model'.

Solving the BVP requires an expression for the local equi-
tibrium potential in terms of the utilization 4. To obtain an
expression for V,,(#) we simply assume fuci and oxidant to
be a mixture of ideal gases and neglect concentration gradi-
ents over a cross section of a gas channel (ideal mixing in
the gas phase).

3. The linearized Nernst potential for a ‘basic MCFC
model’

In this section the general ‘basic model is specified for an
MCFC. This requires the representation of the equilibrium
potential inside an MCFC as a function of the fuel wtilization

u. Oxidant utilization in an MCFC is often sufficient low to
have little overall effect | 6], because in practice large oxidant
flows are used for cooling. Therefore and for reasons of sim-
plicity, it is convenient to neglect oxidant utilization in the
*basic MCFC model’. The representation of the equilibrium
potential V() inside an MCFC for zero oxidant utilization
is derived in Appendix A, assuming temperature and pressure
to be uniform. Furthermore, we do not consider the methane
reforming reaction and assume that the water—gas shift reac-
tion is in equilibrium. The expression resulting for V(u)
turns out to be complicated and unsuitable for analytical pur-
poses; it can be used in numerical computations, whose
results are given in the next sections. In order tomake asimple
mathematical analysis of the *basic model’ possible, a linear
approximation for the equilibrium potential will be derived
below.

The Nernst faw gives the equilibrium potential in terms of
partial pressures p; of the species in the process flows

RT pH;
V. = —_— 1/2 pnl
a1t} E"+2 In(pO}"? pCO3 )+2F In—‘pr (O]

where E° is determined by thermodynamics and the super-
seripts “a’ or ‘¢’ refer, respectively, to the anode or cathode
gas composition. As we ah hode flow,
the second term on the right-hand S|de of Eq. (7) is consid-
ered to be independent of position. In Appendix A itis shown
i:ow the partial pressures in the last term of Eq. (7) can be
expressed in terms of the fuel utilization u.

At 650 °C the factor RT/2F in the Nemst equation is equal
to about 40 mV, which is smatl in comparison with comman
values for the OCV (typical 1000 mV). The Nernst potential
V. (4) in Eq. (7) varies thus moderately with w, except if
any of the partial pressures in the last logarithmic term is very
low. The shift reaction will not cause extreme low partial
pressures due to its equilibrium state. So, only for values of
1 near zero or unity we may expect big changes in the loga-
rithmic term. Nevertheless, Fig. 2 shows that for most values
of u, an accurate approximation Vg, (u) for the local equilib-
rium potential V,, () can be obtained from a linearization

VEW) =VE(0) —au,

dav,
a=constant= ——df for most u€ (0,1) (8)

The constant of proportion « in the linearized equilibrium
poiential is not exactly defined, but must be a characteristic
value for the derivative of — V,,(u) with respect to u. Note
that the dimension of « is V, since 4 is dimensionless.

As shown in Fig. 2, the local equilibrium potential V,, (x)
inside an MCFC contains an initial dip near the origin, ie.
the equilibrium potential decreases more rapidly near #=0
than in the neighborhood of u = 1/2. Moreover, the equilib-
rium potential also decreases fast near the point of singularity
u= 1. Apparently, a suitable value for « is obtained if the
derivative of the equilibrium potential is determined in the
point of inflection, i.e. the point, say ™, where the second
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Vieq @), Veg(@) (Volt)

0 0.2 04 06 0.8 1
fuel utilization u(x)
Fig.2. le of a linearized Nernst eq V % (#) incase of an MCFC.

Note the initial dip in the exact Nemst equation V,,(«) at low utilization.
(- —-) (VX (u), and (—— ) V,,(u); for parameter values see Table 2.

derivative of the equilibrium potential with respect 10 u is
zero. Then we have

2
Si-Lf“(u*) =0, %(u*) =—a,
du’ du
VE(0) = Vo () + au™* (8a)

For instance, consider the inlet fuel composition presented in
Table 2 and a homogeneous cathode flow of 70% air and 30%
C0,. In Table 2 the mole fractions after equilibrium are based
on a value of K=0.5 for the equilibrium constant of the
reverse shift reaction { corresponding 1o a cell temperature of
650 °C and atmospheric pressure [ 7). For the fuel compo-
sition presented in Table 2, the point of inflection of the
function V(1) can be determined numerically to be
w* =0.50. In this point the slopc of V,(«) is 0.18 V. Hence
in this case the linear approximation for the equilibrium
potential is given by

Vi (u)=1.03-0.184,

where the actual OCV for this gas composilion is 1.06 V.
Because of the initial dip in the Nernst potential, the value of

(025ux038) ()]

V4, (0) is 30 mV lower than the actual C:CV. The boundaries
for # given in Eq. (9) arc not strict, but give an idea of the
interval for which the linear approximziion is accurate.

If the local equilibrium potential of a low-temperature cell
is linearized, then the difference V(1) — V,,(0) must not
be confused with the correction term V. that was introduced
in the previous section.

Machielse [ 1] determined experimentally the quasi-ohmic
resistance r for an MCFC to be 1.195 . cm?, see Table 2. He
also applied the PSI (Physical Science:. Inc.) cell model [ 8}
for his experimental conditions and obtained a 10% lower
value of 1.08 } cm® Throughout this paper we will use
r=1.08 2 cm® Only in Section 5, where a comparison is
made with the experimental results ob:ained by Machielse,
we willuse r=1.195  cm”.

4. Analytical soluiions of the ‘basic model’

The BVP that was introduced in Section 2 can only be
solved in closed form for some simplified versions of the
equilibrium potential V, (#). In this section an analytical
solution of the BVP is derived, assuming the function V()
to be lincar. In Section 3 it was shown for an MCFC that
Veo(1e) is almost linear up to high values for the fuel utiliza-
tion «. The analytical solution will be thus fairly accurate up
to high values for the total fuel wtilization u,. The obtained
analytical expressions will therefore apply to problems with
practical values for u,.

Also approximate solutions for the BVP will be derived
and in Section 4.2 the influence of the initial dip in the equi-
librium potential V., (1) will be considered.

4.1. Analytical cell model

The cell model that is obtained if a linear function is used
to describe the cquilibrium potential V (u) in the BVP
is referred to as the ‘analytical cell model’. The problem
is to find a function a: [6,1] — [0,u,] and a constant V7,
satisfying

Table 2
Standard gas compositions for an MCFC and cor ding p vatues at pressure; PSI=cal § from PST model [ 1], exp. = determined
from expeni results [1]. ¢ equihbriwm is i
Anade inlet gas H. cO HO CO, CH,
Before equilibsivm 0.64 0 0.20 0.16 0
After cquilibrium 0.56 0.08 0.28 0.08 [}
Cathode inlet gas air CO,
Homogeneous 0.70 0.39
T(¢C) a(V) V0) (V) Ve (0) (V) K r(Qem?)
650 0.18 1.03 1.06 s 1.08 (PSY)

1.195 (exp.)
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du
a‘—;“(v*(o) —au—V¥),

u(0) =0,

(D<x<l)

a(l)=u,

where a (defined by Eq. (8)) and ri,, are positive constants.
Integration of the differential equation with respect 1o x
from zero to a point in the interval [0,1] gives

u(x)= —“‘-M(l exp(_nm)) (10)

This function must satisfy the end condition #(1) = u,. Using
this condition, the following relation between V *_, and i,
can be derived

-1
v:g,.=v:f,(0)—a(1—exp(~::5)) “ an

The set (u(x), V&) given by Eqgs. (10} and (11) is the
solution of the Analytical Cell Model. The local current den-
sity inside the cell can be calculated from this anatytical

solution, using Eq. (6):
p(—ix) (0<x<1)
hn
(12)

Note that Eq. (11) is linear with respect to the total utiii-
zation u,. Thus, the use of a linearized Nernst equation results
in an expression for the cell voltage that shows a linear
dependence on u,. In the following an approximation for
V& will be derived that is linear with respect to the total
utilizaiion u, as well as to the average current density i;,u,.
We start the derivation of this double linear expression for
V2 with the introduction of two morc relations, i.e. arelation
beiween i(0) and i( 1) and a relation between the cell voltage
and the electrical losses due to the quasi-ohmic resistance, r.

According 10 Eq. (12) the following identity holds

iy —i0) < YEO Y Vw..(P( ) )

The cell voltage V¥, can be eliminated from this identity,
using Eq. (11). Then the following simple relation between
the current density i(0) at the cell inletand the current density
(1) at the cell outlet is obtained

i =i, du Vf,(O) Ve

auy

1(1)—1\0)———’_— (13)

In order to obtain a b the cell voltage and
the quasi-ohmic losses we multiply both sides of the differ-
ential equation in the analytical cell model by du/dx and
integrate with respect to x from zero to unity

025

i(x) (Alem2)

r =108 (Ohmcm?)

02 04 06 03 1

x

Fig. 3. Current distribution inside an MCFC: according to (corve A) the
“analytical cell model’, and (curve B ) numerical computations based on the
non-linvarized Nemst equation are shown. Also the constant (zero-order)
and linearly g (first-order) imati

d
!(dx") dx——I(V*(()) au—-V%) du

1
=—|V%(0) ~= *
"ii..( a(0) “ul V.::n)“l

Rewriting this result, using the first part of Eq. (12} and the
following definition of the average current density iy,

out = linkhy (14)
we obtain
1
1 r
Via=V1(0) -3 au.—i—J’iz(x) dx (15)
out °

Note that Eq. (15) is exact within the analytical cell model.
This equation states that the cell voltage is equal to the aver-
age value of the lincarized equilibrium potential inside the
cell, minus the total loss in cell voltage due to the quasi-ohmic
resistance r.

It is possible to calculate the integral in Eq. (15) by using
the exponential relation for the local current density i(x)
given by Eq. (12). However, this is not very practical since
the expression for the cell voltage, obtained in this way, will
be equivalent to the expression for VZ, given in Eq. (11).
Although the exact current distribution is known to be expo-
nential, it is convenient to approximate the current density
i(x) in the last term of Eq. (15) in order to obtain approxi-
mate expressions for the cell voltage that are more simple
than the exact expression in Eq. (11). To this end, we assume
i(x) either to be constant (zero-order approximation) or to
be linearly decreasing (first-order approximation). The
approximate current distributions must have the same average
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current density i, as the exacl (i.e. the exponential) current
distribution (see Fig. 3).

Note that the integral in Eq. (15) is cqual to the average
value of i* over the whole cell, which is always greater than
or cqual to the square of the average current density, i.e. i2,
(from the Lemma of Cauchy-Schwarz [9] ). This means that
the last term in Eq. (15), that represents the tctal loss in cell
voltage due to the quasi-ohmic resistance, r, is minimum for
a homogeneous current distribution

]
L j 2(0) dez iy, (16)
laul

(]

where the equality holds if (and only if) the current density
i(x) is equal to the average current density i, for all x. An
upper bound for the cell voliage V), is thus obtained if we
assume a homogeneous current distribution, i(x) =i, in
order 1o approximate the integral in Eq. (15). Then the zcro-
order approximation for the cell voltage V%, is obtained. This
approximation does not account for the overpotential, say A,
due to the non-homogeneity of the current distribution

1 .
Via=VL0) —Z0 g = Ay

A, =0 in zero-order approximation [ 1))

where A; >0 can be omitted in arder to obtain the double
finear, zero-order approximation for V25 This double linear
relation for the cell voltage was also derived by Machielse
[1] and Hemmes [ 2], using, however, different assumptions
and approximations. The second term on the right-hand side
of Eq. (17) is called the Nernst loss and is the direct conse-
quence of the decrease in V5 () in the direction of the cell
outlet. The term #i,,, represents the loss in cell voltage due to
the quasi-ohmic resistance, r, in the case of a homogeneous
current distribution. Furthermore, we have shown that A, is
the extra overpotential due to the non-homogeneity of the
current distribution inside the cell.

Another possibility is the use of a linear or first-order
approximation for the local current density. According to the
identity in Eq. (13) this means that i(x) is approximated by

(X)) =g+ 2 (12 - x), first-order approximation
r

Note that in this first-order approximation, the average
current density is still equal to i,,. Using the first-order
approximation for the local current density to approximate
the integral in Eq. (15), we obtain the following expression
for V&,

1 1
Vaa=Va0) _Euu' - ritlul—gzzriunl+A2-

Az=0 in first-order approximation (18)

where A; is the inaccuracy in the first-order approximation
and the dimensionless number Z is defined by

o
Z= >0 l
2ri, (19

The significance of the number Z will be explained in
Section 6.

Comparing Egs. (17) and (18) we find that the extra
overpotential A, due to the non-homogeneity of the current
distribution inside the cell is given by

1.
A, =§Z-r’uul—A29

A,=01in first-order approximation (20)

Although the first-order approximation is not exact, it will
turn out that the expression in Eq. (20) with A,=0 is very
close to the exact value of A,.

Furthermore, it will be illustrated by an example that the
obtained approximations for V¥, are accurate, notwithstand-
ing the fact that simple estimations for the local current den-
sity were used in the derivations. Note that, once VX%, has
been calculated using one of the Eqs. (17), (18) or (11),
based on the zero- or first-order approximation for the local
current density or the exact solution, respectively, a more
accurate expression for the local current density can be
obtained from Eq. (12).

We consider the MCFC as an example. For an MCFC
typical values for V3 (0), « and r are V5(0)=1.03 V,
a=180mV and r=1.08 { cm?, respectively. The equivalent
input current i, is assumed to be 200 mA/cm?. At a total
utilization of «; =0.75, the average current density is equal
to 150 mA/cm?, which is a standard value for an MCFC
operation. Within the analytical cell model the cell voltage
V¥, can be calculated exactly from Eq. (11) tobe 0.7912V.
The zero-order approximation in Eq. (17) gives an upper
bound which is9.3 mV larger, i.e. V&, =0.8005 — A, V. This
means that we have an extra decrease in cell voltage of 9.3
mV due to a non-homogeneous current distribution. The first-
order approximations in Egs. (18) and (20) turn out to be
very accurate. Eq. (18) with A;=0 yields a cell voltage of
0.7911 V compared with 0.7912 V for the exact solution.
Hence, A; is, in fact, in the order of 0.1 mV, which is negli-
gibly small.

Fig. 3 shows the current distribution, obtained from Eq.
(12) as well as from numerical computations based on the
non-linearized Nernst equation. As a consequence of the ini-
tial dip in the Nernst potential (sce Fig. 2 for small values of
the local fuel utilization) the analytically calculated current
distribution shows a much smaller current density near the
cell inlet, compared with the numerically calculated current
distribution. This implies that the analytically calculated cur-
rent density will be somewhat larger in other parts of the cell,
since the average current density was set equal for both
current distributions.

For the MCFC example (4, =0.75), the extra losses in
cell voltage duc to the non-homogeneity of the current dis-
tribution are small (in the order of 10 mV). More general,
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but still within the assumptions of the ‘basic model’, we can
conclude that at normal (high efficient) operation, the extra
clectrical losses due to 2 non-homogeneous current distribu-
tion inside an isothermal fuel cell are small and will be close
to the estimation (Z2/3)ri,,, given by Eqg. (20).

4.2. Extended analytical cell model

In this section we will consider the influence of the initial
dip in the Nernst equation on the cell voltage. To this end,
we will use a partly linearized equilibrium potential, instead
of Vﬁl(u). In the so-called ‘extended analytical cell model”
we consider the loca! equilibrium potential to be given by
Veqiu) for u<u* and Vg (u) for u>u*, ie. the function that
follows the exact Nernst equation up to the point of inflection
u* (see Eq. (8a)) and then connects with the linear approx-
imation V() as used in the anatytical cell model.

It is shown in Appendix B that the cell voltage V&, cor-
responding with this partly linearized Nemst equation can be
approximated by

1 1
V=V =0~ o+ G
1

u, #0, zero-order approximation (21)

§ 1 1.,) . 1
Vih= V;',‘J(O) - -2~au, - (1 + 522)nnm + Cu_,'
#,#0, first-order approximation (22)

with the constant C equal to the surface between the linear
approximation V(1) and the initial dip in V(%). Again the
zero- and first-order approximations refer, respectively, to a
constant and linearly decreasing current density i(x). Com-
paring the approximations for V%, and V &, we see that the
influence of the initial dip in the Nernst equation on the cell
voltage can be taken into account by an extra term, i.e. C/u,.

In the following example it is made clear that V &3 is a very
accurate approximation for the cell voltage V), i.e. the cell
voltage corresponding with the non-linearized Nernst equa-
tion. At least, as shown in Appendix B, for values of u, in
the interval for which the linear fit of the equilibrium potential
is accurate (see Section 3)

V=V, 02<u4,508

The accuracy of both approximations in Eqs. (21) and
(22) will be illustrated on the basis of a similar MCFC ¢xam-
ple as was introduced at the end of Section 4.1. However, we
now consider different values for i;, and «,, keeping the aver-
age current deasity i, =i,u, constant at 150 mA/cm?, For
the fuel composition as presented in Table 2, the value of C
was numerically determined to be C=3 mV. Fig. 4 shows
the cell voltage as a function of the total fuel utilization, i,,
for a constant average current density iy, = 150 mA/cm?,
according to the zero-order approximation in Eq. (21) as
well as to the first-order approximation in Eq. (22). The
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> 08
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total fuel utilization
Fig. 4. Example of the cell voltage of an MCFC as a function of the total
fuel utilization, u,, for a constant average current density of 150 mA/cm?.
Top, middle and battom curves with the rd i
non in Eq. (21), the first-order approximation in Eq. (22) and numerical
computations, respectively.

difference between these two approximations represents the
extra loss in cell voltage due to the non-homogeneity of the
current distribution.

The results of numerical computations based on the non-
linearized Nernst equation are also plotted in Fig. 4. The
approximations appear to be accurate up to a total fuel utili-
zation of 80%. For values of u, larger than 0.8 the lineariza-
tion of the Nernst equation fails and the approximations start
deviating.

5. Comparison of the models with t

In the preceding sections a ‘basic model’ suitable for a
numerical approach and an ‘analytical cell model’ have been
introduced. In this section, some results obtained from these
models will be compared with experimental results presented
by Machielse [ 1]. This comparison is mainly directed on the
cell voltage of an MCFC as a function of the fuel utilization,
in particular on the following identity derived from the
Egs. (22), (14) and (19)

Vea) 1@ oL
( o, )i,..~ 2a brim uy Cuf’ u, *0 (23)
where the index indicates that the partial derivative holds
for constant values of the average cument density
(ig =constant). It will be made clear that this derivative is
almost constant for nearly afl relevant values of u,. It strongly
determines the relation between the cell voltage and the total
fuel utilization u,.

The conditions outlined in Section 3 are the same as used
by Machielse. The values a=180 mV, C=3 mV and
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r = 1.195 (Ohm cm?)
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total fuel utilization u;
Fig. 5. Cell voltage as a function of the total fuel utilization, u,, as obtained
from experimental results (marked poinis) on an MCFC bench-scale cell,
imposing constant average current densities: (A) 50 mA/cm® (B) 100
mA/cm? ard (C) 150 mA/cm?. (- —~) Plots for values of 4, = 0.2 only,
represeat analytical results obtained from Egs. (21) {top) and (22) (bot-
tom). ( ) Numerical results are plotted for all values of 1, <0.9.

r=1.195 £} cm? will thus be used in the calculations. For an
average current density of 150 mA/cm® the three terms on
the right-hand side of Eq. (23) are successively —90, ~15
and —12 mV for u, =1/2, the first term being dominant.
(Note that this term is independent of u;, whereas the two
small terms in the expression for the derivative are not.)
Nevertheless, the sum of the terms appears to be approxi-
mately constant for a wide range of values for u,, as is clear
from the almost linear curves in Fig. 4. Calculating the aver-
age value of the derivative in Eq. (23) over the interval from
u,=0.2 to u; =0.8, we find

Ween

(?) = —124mV, analytical; i,,,= 150 mA/cm?
[}

Jout

This value will be compared with experimental data obtained
by Machielse [1]. His experiments were carried out on an
isothermal 1000 cm? MCFC bench-scale cell.

Machielse determined the cell voltage as a function of the
total fuel utilization, imposing constant average current den-
sities. The results are reproduced, with permission, in Fig. 5.
This figure shows three sets of experimental results, cach for
aconstant average current density. As can be seen, the exper-
imental results within a set can be connected by an almost
straight line, from which we could determine
(%/L:L“) =—125t0 —175mV, experiinental

' fout
where the exact valuc of the derivative depends on the
imposed value of i, Unfortunately, these values are not
given in Ref. {1]. However, the vertical distances in Fig. 5
between two sets of measurements are proportional to the

current differences, because of the term ri,,, in the analyiical
approximations in Eqs. (21) and (22) (dashed curves).
Thus, the average current density i, varies considerably for
the three sets of measurements and in accordance with the
analytical relation in Eq. (23), the slope of a line through a
set of experimental points depends on the imposed value of
ioe As the bottom set of cxperimental points in Fig. § yields
a slope of approximately — 125 mV, very close to the ana-
Iytical value, it is most likely that this set corresponds to an
average current density iy, = 150 mA/cm?,

For a more detailed comparison of the experimental results
obtained by Machielse and the theoretical results obtained
from either the basic model (numerical computations) or the
extended analytical cell model, we assumed that the meas-
urements were carried out for average current densities of 50,
100 and 150 mA/cm®. For these current densities the corre-
sponding analytical and numerical results were presented in
Fig. § together with the experimental results. As shown by
this figure, the experimental and theoretical results are in very
good agreeinent.

§. Derivation of input—output relations

As already remarked in the introduction, an analytical
approach can contribute to a better understanding of fuel celi
behaviour. To this end, some input—output relations will be
derived in this section, i.e. fuel cell performance will be
expressed in terms of independent variables.

Since the constant of proportion « in the linearized Nernst
equation can be determined from the fuel composition (see
Section 3), only two independent variables appear in the
nathematical formulation of the analytical cell model, i.e. i;,
and u, (see Section 4.1). However, in practice, the two ‘con-
trol knobs’ or independent variables that govern the perform-
ance of an isothermal fuel cell are the cxternal load resistance
Riq.q and the equivalent input current density f,,. Recall that
iin can be calculated from Faraday’s law. For smaller testcells
one can connect an electronic load that keeps the celi voltage
or total cell current at a constant value (potentiostatic or
galvanostatic control, respectively).

‘When the pair (R0 éin) is considered as the set of inde-
pendent variables, instead of («,, i;,}, it is convenient to write
the cell voltage as the product of the load resistance and the
cell current 1. Relating the load resistance to the cell surface
BL we then abtain

V &= Ripuifont= BLRyqsfon (24)

On the other hand, the cell voltage V%, in the zero-order
approximation, is given by Eq. (17). Eliminating the ceil
wvoltage we find, upon rearrangement
o= VE(D) /(BLRm,,+ r+%h),

zero-order approximation (25)
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‘This current input—output relation gives the average current
density i, as a function of the ‘two control knobs’, R,,., and
i

Eq. (25) looks ike Ohm’s law and contains three ‘resis-
tances’, all having the dimension Q m?: the scaled external
load resistance, the internal cefl resistance, r, and a term o/
(2i,,) that we call ‘the utilization resistance’. The utilization
resistance is due to the Nernst loss and decreases as the fuel
flow increases. (It vanishes in the limiting case of an infinitely
large fuel fow, in accordance with the fact that in that case
fuel utilization is effectively zero; so achieving, for a fixed
Riuag, the maximum output current iq,,,. (The fuel composi-
tion is the same throughout the cell and a homogeneous cur-
rent distribution is established.) In this limiting case the
zero-order approximation is exact and yields

max =V 35(0)/ (BLRygua +1)

Recalling Eq. (19) we see that the dimensionless number
Z was actually defined as the ratio of two resistances, i.e. the
utilization resistance a/ (2i,,) and the quasi-ohmicresistance,
r. Below it will be made clear that it is the number Z that
largely determines input-output relations of fuel cells.

To obtain the output current density as a function of the
cell voltage and the number Z we solve the zero-order approx-
imation in Eq. ( 17) for &, and multiply the obtained equation
by i
YA Vi,

M i+ (a/2) "
_ VE*Sl(O) -VZ

142y zero-order approximation (26)

Multiplying Eq. (26) by VX, we obtain the power output
Pout = i Viin per unit cell surface

0
Pou™ Va0 Vi,

a+2)r cem  Zero-order approximation

@n

Note that pm“ as a function of V., is a parabola with its
maximum at V%, = VX,(0)/2.InFig. 6the parabolasforZ=0
and Z=0.5 (i.e. for constant i;,,) are shown. The output power
at constant utilization is given by the equation that is obtained
if the following identity is substituted into Eq. (27)

Z=u ( (V&0 - an)—ul)

This latter identity easily follows from Eq. (26), using
Tou = Tty = o/ (2Zr).

Maximum power output means minimum capital costs for
fuel cell stacks. Consequenily, one may be tempted to operate
a fuel cell at a cell voltage Vg, = Vg (0)/2 and a fuel utili-
zation i), corresponding with the maximum of a parabola in
Fig. 6. However from Eqs. (24) and (25) it can be shown,
by climination of iy that at this point BLRg=r+ (a/
2i;) = (1 + Z)r. Hence, the power loss due to internal keat

03
E 025 20, =0
g . .
g o2 N
L, .
H fr S A-uyz08
-4 'y N
2 015 f 2405 N
& M
..3 .
£ ot -
g \,
E W\
g \
3 005 \
W
o A
) 02 04 06 08 1 1.2
Veen (Volt)

Fig. 6. Power output as a function of the cell voltage for constant values of
xm. hence of Z, as well as for constant values of ;. The circte denotes the
of normat ion: for values sec Table 2.

production by the quasi-ohmic resistance, r, is 1/(1+Z)
times the delivered power in the form of electricity, which is
undesirably high. Typical values for an MCFC at normal
(high efficient) operation are Z:=0.5 and V¥;,=0.8 V. Then
it follows from Eq. (27) that the output power density po..
can increase by 50% for Z— 0, .. for i;, — ™, even at constant
cell voltage. A further increase in power output can be
achieved by decreasing the cell voltage by lowering Ryo,4-
Fig. 6 shows that for small Z and for a cell voltage equal to
half the value of the GCV, a total increase of 100%, respect
to typical operation, in power output occurs (i.e. from 0.11
to 0.2-025 W/cm?). However, at these corditions
BLR,,s = r, which is clearly not an opiimum situation for fuel
cell operatiun.

More accurate input—output relations can be obtained ina
similar way, using the first-order approximation in Eg. (22).
For instance, analogous to the derivation of Eq. (25) it can
be shown that

1
. [v;(O)/(BLRm+(1 +§z’)r+%)]

Ciin
Va0

Below we will successively consider examples of the cur-
rent-input output Egs. (25) and (28), assuming a fixed load
resistance. Examples of i, as a function of Ry, for a fixed
equivalent input current i, are given in Ref. [10].

InFig. 7 the delivered current of an MCFC as given by Eq.
(25), is plocted as a function of the variable i;, for a constant
(and small) load resistace BLR .5 =4 {cm?. Again the same
parameter values, listed in Table 2, have been used.

Note that in Fig. 7, the slope of a line conaecting a point
onthe curve and the origin yields the total utilization uy = ig,,/
i;n as indicated in the figure. Recall that the maximum output
current density i, is achieved for an infinitely large value
of i;,. Imagine that, starting from the point for which i;,=0.8

u, #+0; first-order approximation (28)
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Fig. 7. Output current density as a function of the equivatent input current
density for an MCFC at a constant load resistance. (- — -) representing the
zero-order approximation in Eq. (25}, and ( ) according to numerical
computations. Lines of constant utilization and the maximum achievable
cursent, based on an OCV of V,,(0) = 1.06 V, are also shown.

A/cm?, the fuel supply will be decreased. As this means that
i, decreases, this will result in an increase in the total fuel
utilization, u,. Since u; cannot be higher than unity the line
;=1 rep alimit. H , for large values of u), the
linearization of the Nemst equation fails and consequently
the analytical solution intersects the line u, =1 (as shown in
Fig. 7). Since this is not possible, the analytical expression
in Eq. (25) cannot be used for very small values of i,
Evidently, when #u, is almost unity and we continue to
decrease i;,, the output current density must approximately
follow the line u, =1 down to the origin. Numerical calcu-
lations, based on the non-linearized Nernst equation, show a
quite sharp transition from the curved line according to Eq.
(25) to the line 1, = 1. For u, > 0.8 the analytical solution
starts deviating from the numerical solution, but significant
deviations accur only for very high values of the total fuel
utilization i;. The analytical expression in Eq. (25) is thus
very accurate up to high utilizations.

The output current density i, according to Eq. (28) nearly
coincides with the numerical solution up to very high values
for the total fuel utilization u, and is therefore not plotted in
Fig. 7. A close-up of the curve obtained from Eq. (28) is
given in Fig. 8. This figure also gives results for the value
BLR,,,a=5 § cm® (bottom curves), which is a typical value
for the load resistance of an MCFC at normal operation

(fpu = 150-160 mA/cm?).

It is evident that optimum conditions for fuel cell operation
are near the sharp transition point at which the output current
density diverge from the analytical solution. Because other-
wise, cither fuel utilization becomes too high and the cell
voltage (given by BLR, 4i..,) drops strongly, or the utiliza-
tion is too low and then not sufficient hydrogen is converted,
which in general leads to a lower system efficiency. Fig. 7
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equivalent input current density i, (A/cm?)
Fig. 8. Close-up of the output current density as a function of the equivalent
inpul current density for an MCFC, showing very good agreement between
{~ - -) the first-order approximation in Eq. (28), and ( } numerical
computations.

Q.14

also shows that the decrease in i, is small up to very high
values of the total utilization u,. Hence, in principle, high
utilizations can be achieved without a large decrease in cell
voltage or output power density (i.e. BLR,qui2u)-

7. Conclusions

The following conclusions could be drawn from the present
study.

1. A simple stationary ‘basic model’ was developed, based
on the assumptions shown in Table 1. The ‘basic model’ can
be used to describe isothermal fuel cell behaviour, independ-
ent of the type of fuel cell.

2. It was shown that the modeling of fuel cells can be
simplified by the introduction of:
® The ‘cquivalent input current’, %,, being the maximum

amount of current that is produced in the case of complete

fuel utilization. It can be calculated from the gas compo-
sition and the gas flow rate, using Faraday’s law.

@ Alinear refation for the local Nernst potential as a function
of the fuel utilization.

3. Linearization of the Nernst potential in the ‘basic model
results in a cell model that can be solved analytically. For an
MCEFC the resuits obtained from the analytical cell model are
found to be accurate up to high fuel utilizations, when com-
pared with numerical computations based on the non-linear-

ized Nemst equation. The analytical cell model also agrees
well with measurements obtained by Machielsc [1) on an
isothermal 1000 cm® MCFC bench-scale cell.

4. The influence of simplified current distributions in the
cell was examined: a homogeneous current density and a
linearly decreasing current density were compared with a



F. Standaert et al. / Journal of Power Sources 63 (1996) 221-234 231

realistic current distribution. For an MCFC the loss in cell
voltage corresponding with a homogeneous current distri-
bution is almost 10 mV lower than the actual loss in cell
voltage.

5. The ‘basic model® contains two independent variables,
which means essentially that a fuel cell has two ‘control
knobs’, i.e. the external load resistance R,,,q and the fuel
supply through the equivalent input current Z,,,.

6. The analytical cell model can be used to express the cell
current and the cell voltage in terms of the independent var-
iables. Eq. (17) for the cell voltage clearly shows the over-
potential dug to fuel utilization. This so-called ‘Nernst loss’,
is proportional to the fuel utilization and the slope a of the
linearized Nernst equation. Eq. (25) for the cell current is
analogous to Chm’s law. The influence of the Nernst loss
appears as an ‘utilization resistance’, being proportional to
the slope a and inversely proportional to the equivalent input
current, I,

7. Fuel cells can deliver large peak powers, of course at
the expense of losing efficiency. Compared with normal
(high efficient) operation, the power output of an MCFC can
be increased by about 50% by just increasing the irput flow
even at constant cell voltage. By also decreasing the load

i R0 and cc ly the cell voltage, the power
output can be increased by about 100%.

8. Fuel cells can be operated at high utilizations without a
large decrease in cell voltage or output power density.

8. List of symbols

A decrease in cell voltage due to the non-
homogeneity of the current distribution, V

A, inaccuracy in the first-order approximation, V

B width of the rectangular cell, m

C surface between the initial dip in V,, (1) and the
linearized function V¥ (u), V

[4 molar concentration of the gas mixture, mol/m?

F constant of Faraday, C/mol

i local current density, A/m?

L, total current equivalent of the fuel supply, A

in total current equivalent of the fuel supply per unit
cell surface, A/m?

I total current output of a fuel cell, A

fout total current output of a fuel cell per unit cell
surface; average current density, A/m?

max maximum output current density for a fixed value
of the load resistance, A/m?

K equilibrium constant for concentrations in the
shift reaction

L length of the rectangular cell, m

n total number of moles in a control volume, mol

n; number of moles of a species in a control
volume, mol

Pouw output power density, W/m*

P pazrtial pressure of the ith species in the fuel, N/
m

4 constant quasi-ohmic resistance, @ m*

Riges exiernal load resistance, 2

R universal gas constant, J/ (mol K)

T absolute cell temperature, ¥

u {uel utilization

u point of inflection of the function V (#)

u, total fuel utilization, i.e. value of u at the cell
outlet

v utilization of CO

V()  Nemnst potential as a function of the utilization u,
v

V& (u)  linear fit for V, (u), V

Veen cell voltage, V

Veor intercept of linearized polarization curve
{V.oc=0 for the MCFC), V

Vi, cell voltage if the Nernst equation is linear with

respecttou, V
ven cell voltage corresponding with 2 partly
linearized Nernst equation, V
x scaled (i.e. relative) distance to the cell inlet
X distance to the cell inlet, m
X; mole fraction of the ith species
z dimensionless number (see Eq. (19))

Greek letters

a characteristic value for the derivative of
— Vi (u) with respecttou, V

L] lacal overpotential, V

I'4 integration variable

Abbreviations

ocv open-circuit voltage, i.e. Vo(0)
MCFC  molten carbonate fuel cell
ODE ordinary differential equation
BVP boundary value problem

Appendix A. The equilibrium (or Nernst) potential as a
function of the utilization in the case of an MCFC

In this appendix an expression for the local equilibrium
potential inside an MCFC as a function of the local fuel
utilization, u, is derived. The derivation is based on acommon
representation of the Nernst equation and on the assumptions
2, 3, 6 and 7 given in Table 1. Furthermore, we neglect
diffusion effects in the gas phase, i.e. the anode gases are
considered to be homog over the cross section of a
channel (conform to assumption 4). We also neglect the
methane reforming reaction and distinguish onlty four chem-
ical species in the fuel flow, i.e. Hy, CO, H;0 and CO,. Partial
properties are denoted with an index i€ {1,...,4}, using the
following sequence for the species
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i 1 2 3 4
Species H, CO H,0 CO,

The cell half-reaction at the anode side of an MCFC is
given by .
H,+C0;*~ - H,0+CO,+2e~ (AD)

Assuming constant partial pressures for the oxidant spe-
cies, the corresponding Nernst equation can be written as
51. pi(0) _*_H- pi{w)
2F “py(Mpi(0)  2F  py(u)p.lu)

(A2)
where V,,(0) is the OCV. The OCV can be calculated from
the inlet gas compositions which are assumed to be known.

If the fuel behaves like an ideal gas we can usc the ideal gas
law to determine the partial pressures, p;, of the components

pi=cRTX, i=1,....4 (A3)

Veq(ue} = Veg(0) —

with X; the mole fraction of the ith species, ¢ the molar con-
centration of the mixturc and R the universal gas constant.
Note that ¢ is constant throughout the cell, since we assumed
temperawre and pressure to be uniform. Using Eq. (A3) to
eliminate the partial pressures from the Nernst Eq. (A2) we
obtain

_RI. X,(0) E, X, (u)
2P XA(0)X(0)  2F  Xy(w)Xe(w)

(A4)

Veal) =Veo(0) —

Hence, to express the local equilibrium potential in terms of
u we have to determine the mole fractions X; as functions of
I
To this end, the number n,(0), (i=1,....4} is defined as
the number of moles of the ith species that enters the cell at
the anode side per unit of time. The total number of moles
n(0) that enters at the anode side, per unit of time, is given
by the sum of #,(0) over all i. The numbers n,(u) and n(u)
are defined in an analogous way and arc velatea to one and
the same volume element, following the motion of the flow.
The mole fractions of the species as a function of the utili-
zation can be written as
X =" iy (AS)
n{u)
The numbers n;(#) in Eq. (AS) depend not only on the
conversion of hydrogen by the electrochemical reaction, but
also on the production of hydrogen due to the water—gas shift
reaction

CO+H,0=CO,+H, (A6)

The total number of moles H, that can be converted by the
clectrochemical reaction in the case of complete fuel utili-
zation is equal to the number of moles H, and CO that enters
the cell. Since the utilization u(x) is defined as the fraction
of this supply that is converted in the interval [0,x] we have

ny(u) +na(u) = (1,(0) +n2(0)) (1~ ) (A7)

The total number of moles CO that is converied by the
shift reaction if complete fuel utilization is achieved is given
by n,(0). The fraction of this number that is converted
between the cell inlet and the position that corresponds with
the utilization v, is denoted by v(u). Hence, by the definiiion
of v we also have

() =mp(0) (1~ v(u)) (AB)

Below, the mole fractions X;, as given by Eq. (AS5), are
expressed in terms of « and v(u). The equilibrium potential
in terms of u and v{) follows from the representation of the
Nernst equation in Eq. (A4). Next, the equilibrium condition
for the shift reaction is used to determine v as a function of
u, after which the equilibrium potential can be expressed in
terms of u only.

In order to determine the mole fractions as functions of
and v(u) we first subtract Eq. (A8) from Eq. (A7), yielding

(1) =n,(0) = (~,(0) +n,(0) Jue+ny (O () (A9)

The second term in the right-hand side of Eq. (A9) gives
the decrease in the number n, (1) due to the electrochemical
reaction. Hence, from the reaction Eq. (A1) it follows that
in the control volume (7,{0) +n.(0) )u moles CO; and as
many moles H,O are produced by the electrochemical reac-
tion. The last term in Eq. (A9) is equal to the number of
moles H; produced by the shift reaction. From e reaction
in Eq. (A6) it follows that in the control volume ny(0)o(u)
moles CO, are produced and as many moles H,O are con-
verted by the shift reaction. Hence, the numbers n5(u) and
ny(u) are given by, respectively

nz() =n3(0) + {n,(0) +na(0) ) — ny(0)o(u)
ng(u) =4{0) + (1n,(0) +12(0)) s +nx(O)u (1) (A10)
The tctal number of moles in the control volume can now
be calculated by adding the numbers »,
4
n(u) =" n,(u) =n(0) (1 +[X,(0) + X2(0) Ju) (All)
i1
Using the identities in Egs. (AS), (A7)—-(A1l) and the
following notation

WX X0 X0
" X(0) X:(0) "

B(u) =1+ (X,{0) + X2(0))u

The mole fractions in Eq. (AS) can be written as

(A12)

1
Xi(u) =X|(0)(1 —a—(bll— U)) B(u),
1

Xa(u) = Xx(0) (1~ )/ d(u)

Xi(u) =x3(0)(l +;l-(bu~ u)) dlu)
3
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1
X4(u)=X4(0)(1 +a—(bu+u)) P(u) (A13)
4
‘We assume that the water—gas shift reaction in the MCFC
is in equilibrium throughout the cell. Using the identities in
Eq. (A3) or Eq. (A12), the equilibrium constant X for to the
reverse shift reaction can be rewritten as, respectively

_Paps XZ(O)X3(0) Xo(u)Xs(u)
Pipe Xi(BX(0) X, (w)Xe(w)

or

as
aa,

Substitution of the expressions for the mole fractions
(Eq. (A13)) into the equilibrium condition yields

(1- u)(l +L(bu— u))
ay

=(1 ~Lbu- U)Xl + Lot u))
a, a,

Solving Eq. (A14) for v(u) and using the equilibrium con-
dition again, we find

(Al4)

v(u) =d+——

b
2(1- K)
N (d—( )b) (2Ka,+a3)b
-K) o
(0<K<1) (Al5)

where the trivial condition v(0) =0 is satisfied and d is a
constant defined by
1+a,+K(a,+a,)

2(1-K)

Using Eqs. (A13) the Nernst Eq. (A4), for zero oxidant
utilization, can finally be rewritten in terms of »

d=

Veg(#) = Ve (0) + — [ln(l——(bu—u(u)))+ln¢(u)

- ln(l +—(bu—v(u)))— ln(l +l(bu+u(u)))]
as a;

(Al16)

utilizing for ¢(u) and v(u) the expressions given by Egs.
(A12) and (A15), respectively.

In an aralogous way, the obtained expression for V,(«)
can be extended to an expression that also accounts for the
utilization of oxidant. However, this latter step is also
described in Ref. [4] and has been omitted in this paper.

A.l. Nota bene

Fig. 9 shows an example of the reaction coordinate v(«)
for the conversion of CO by the shift reaction. For small

0.5
3
2
>
3
2 o0s
§ o
= formation
] °f CO
Q
Q 02

-0.25

.25 0s 0715
local fuel utilization u

Fig. 9. Reacti i for the of CO by the shift reaction,

in the case of standard gas compositions (see Table 2).

values of the fuel utilization, CO is produced from the reverse
shift reaction, while when the hydrogen partial pressure
becomes low, the shift reaction evolves towards the decom-
position of the produced CO. The value of u>> 0 for which »
is equal to zero is obtained by setting v =0in Eq. (Al4) and
solving the result for #

{1+ 1/K)X,(0) +X,(0) -
X,(0) +Xx(0)

This value is exactly 0.5 for the standard gas compositions
(see Table 2) and K=0.5.

v(u)=0

Appendix B. Cell voltage as a function of the totsl
utilization

In Eq. (15) the cell voltage VX, in the solution of the
analytical cell model was writien as the average value of the
linearized equilibrium potential minus the polarization losses
due to the quasi-ohmic resistance, r. In the same way Eq.
(15) was derived, but starting with the ODE in the BVP, it
can be shown that the cell voltage ¥, in Section 2 can be
written as

ul [}
V“":ui,jvm‘") du—iLfF(x) dx (AT
o uulo

In Section 4.1, it was shown (see Fig. 3) that the initial
dip in the Nernst equation has a very small influence on the
current distribution inside the cell. Hence, at normal opera-
tion, the second integral in Eq. (A17) can still be approxi-
mated using a constant (zero-order) or linear (first-order)
approximation for the current distribution inside the cell, just
as in the reduction of Eq. (15). Using the first-order approx-
imation, Eq. (A17) can be reduced to
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Vean = —l—J’Veq(u) du— (1 + ‘1‘22)"'.""-
) 3

first-order approximation (A18)

Assuming that VX, (u), see Section 3, is an accurate approx-
imation of V() for values of u in the interval (1*.u,), we
set Vq(u) in Eq. (A18) equal to V{,(u) for values of u > u™*.
In this way we obtain the following expression for the cell
voltage

3 1 1
Ven =V 5(0) — oy = (l +322]ri.,.,. + Cu—x' w > u*
;

(A19)

wtere C is the surface between the initial dip in the equilib-
rium potential and the linear fit V& (u)

u*

c=j[voq(u)—v:;(u)] du

o

The approximation in Eq. (A19) is also valid for values
of u; <u*, as long as Vi, (u) is an accurate approximation of
Vo) for values of u in the interval (,.u™). Hence, Eq.
(A19) is valid for values of u, in the interval for waich the
lincar approximation V% (u) is accurate.
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