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Analytical fuel ceil modeling 

Abstract 

It will he show that sume important characteristics of stationary operating fuel cells cdn lx un+mood hy analyzing a nmple b&c 
isothermal cell model. The model is in?ependcnt of the type of fuel ccl1 and wdl be used ford general desccnpnon of cells suppbcd wth 
gaseous fuel and oxidant. An example is also given in which the rcsuits are compared with published data of a bench-scale molten carbonate 
fuel ceil (MCFC). Simple expressions relaiing the cell voltage. cell cuncnt and fuel crilizador. are dewed and found to be accurate despite 
their simplicity. Deviations in analytically calculated cell vokagcs from numerical computadons are in the order of mV. Moreowr, it wili be 
shown that a non-homogeneous current distribution yields an extra overpolenlial in the order of IO mV for an MCFC. 

1. Introduction 

Engineering aspects often dotninate the setup of fuel cell 
models and make them rather complicated. Therefore, most 
Fuel ce!l models are not suitable for an analytical approach 
and require extensive computer software for generating 
numerical results. In addition. the dependence of fuel cell 

behaviour on the model parameters is often difficult to 

express on the basis of numerical results only. The great 
advantage of an analytical model is that relations between the 
variables can be made clear in a direct way and that fuel cell 
performancecan bedetermined by the derivation ofanalytical 
expressions. Ontheotherhand,simplemathematicalanalyses 

are only possible for highly idealized models. Nevertheless, 
analytical resuhs arc important in the explanation of results 
obtained from complicated numerical models as well as of 
empirical relations obtained from measurements So. despite 
their limitations, analytical results contribute to a better 
understanding of fuel cell behaviour. 

In this paper. a simple basic fuel cell model is introduced 

forarectangularflatplate fuelcell. Theobjectiveofthe ‘basic 
model’ is to provide insight in the elementary characteristics 
of stationary operating, isothermal fuel cells. using simple 
mathematics. In the ‘basic model’ a fuel cell is described as 
an equivalent electrical circuit (see Fig. I ). This approach is 

also used in Refs. II-31 and will be elaborated into more 
detail in this paper. Special attention will be paid to a linear 
relation between the cell voltage, the total fuel utilization and 

the cell current. Although measurements on a bench-scale 

molten carbonate fuel cell (MCFC) confirm this double lin- 
ear relation [I]. a detailed derivation of the relation is not 
given in any of the references. In this paper, a detailed de+ 

vation will be given and it will be shown that more accurate 

results are obtained if the relation is slightly adapted. 
Table 1 shows the list of assumptions that underlie the 

setup of the ‘basic model’. Oxidant utilization can be lake” 
intoaccountinasimilarway asfuelutilization (seeAppendix 

A), but will be neglected for reasons of simplicity. Due to 

the assumptions 5 and 6, the setup of the ‘basic model’ 1s 

possible without payiog special attention to the theory of 
chemical kinetics. Despite the assumptions listed in Table I. 
the ‘basic model’ can, in most cases. only be ‘solved’ by 
using a numerical method. However, it will be shown that 
linearization of the Nernst potential in the ‘basic model’ 

yields an ‘analytical cell model’, suitable for the derivation 

of analytical expressions that <are in good agreement with 
numerical computations and mea.wremcnts. 
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2. Basic isothermal fuel cell model 

The total anode surface of the cell is given by EL, where 

Land B are, respectively, the length and the width of the cell. 
The approach will be one-dimensional. which means that all 
variables are considered as a function of the X-coordinate 
only, i.e. the horizontal distance (Fig. I I between a cross 
section of the cell and the cell inlet. 

Changes in fuel and oxidant composition occur due IO the 

electrochemxal reactions that are taking placcinside thccell. 
Hence, the local equilihrium potential, as given by Ncrnst 
law, depends on the local composmon of fuel and oxidant. 
The local overpotential q(X) is defined as the difference 
between the local equilibrium potential (V,,) and the cell 

potential (V,,,,) at whichthecurrentisdclivcred.Assumption 

5(a) in Table I leads to 

q(X) = V,(X) -v,,,, = ri(X) (1) 

This linear current-voltage relation is not evident frqm a 
theorerical point of view. The quasi-ohmic resistance. r. does 

not only account for ohmic losses, but also for voltage losses 

due to concentration and activation polariration. Eq. (I ) is 
realistic for an MCFC at normal operation. because experi- 
menrdl current-voltage relations are almost perfectly linear 
for this type of cell i see e.g. [ I 1). But for low-temperature 
fuel cells a strong decrease in cell voltage is observed at low 

current densities. usually ascribed to the activation polariza- 
tion. Furthermore, at high current densities diffusion limita- 
tions occur 14.5 1. Nevertheless, the current-voltage rela:ion 
of a low-temperature cell can be linearized accurately for 
intermediate current densities, yielding an cxpressior. 
for v(X) as V,,,,+ri(X). Rewriting this expression gives 

Eq. (I) with an adapted value for V,,(X). Hence. for low- 

temperature cells, the initial value V,(O) must be se, equal 
;o the open-circuit voltage (OCV) minus the corm&on term 

V,,... 
Note that the resistance of the current collectors is assumed 

to be negligible in the definition of the overpotential ‘) in 

Eq ( I ), so that the voltage between two current collectors is 

equal to V,,,, throughout the cell. For masons of simplicity, 
we assume also that the quasi-ohmic resistance is uniform, 
i.c. r(X) = r for all X. In mos( cases. the quasi ohmic resis- 
tance depends on temperature mainly and, hence. this sim- 

plitication is a dinxt consequence 01 the assumption that the 
fuel cell is isothermal. In general, electrode polarization 
depends also on the local gz~ compositions, thus on X. But 
in thispaperwe will alsoneglectthis influence, whichisoften 

of secondary importance. 
Below we will introduce an ordinary differential equation 

(ODE) for the fuel utilization, u. based <on the expression for 
the overpotential given in Eq. ( I ). The equilibrium potential 
V_, will appear in this ODE as a funcnon of a and not as a 

funcllon of X. In fact, the equilibrium potential depends 

mainly on the local fuel and oxidant composition and is prac- 

tically independent of the small total pressure gradients in the 
process flows [4], Neglecting hydrostatic pressure gradients 
it is possible to determine the composition of the process 
how as a function of the fuel utilization, II. The Nernst 
equation gives thus the local equilibrium potewial in terms 

of the utilization u(X). 
For reasons of simplicity, we assume a large Row of oxi- 

dant being considered as homogeneous. Thus, we have to 
take into account the utilization of fuel only. II isconvenient 

to represent the maximum amount of current, that is produced 
in the hypothetical situation of complete fuel utilization, by 

I,., which we will call the ‘equivalent input current’. Note 

that I,. can be calculated from the gas composition and the 
gas Row rate, using Faraday’s law. The delivered current is 
denoted by I,,., and will be smaller than the equivalcnl input 
current I,.. The ratio I..,/l,, gives the total fuel utilization 

and. in an analogous way. the local fuel utilization N(X) is 

defined as the fraction of 1. generated in the area be!ween the 
cell in!et and position X 

(2) 

where E is the width of the: cell. The expression for the 

overpotential in Eq. (I ) can be used to eliminate the local 
current density i in Eq. (2). Differentiating the result with 
respect IO X and writing V,(u) instead of V,(X) we ohtain 
the following ordinary differential equation 

From the definition of the utilization u in Eq. (2) it follows 
that N is zero at the cell inlet. i.e. for X=0. Apart from this 
inhial value for u. the ODE must he supplied with either a 

suitable end value for a or a value for V,.,,. Choosing the first 
possibility, i c imposing aa end value u, for the utilization, 
we have to solve Eq. (3) for u(X) and V,,,, taking into 
account the boundary conditions 

u(O)=O. Ir(L)=u,. (OCU,<l) (4) 

In order to facilitate the evaluation of the results, it is con- 

venient to scale Eqs. (3) and (4). To this end, we succes- 
sively relate the equivalent input current I,. to the cell surface 
BL and the space coordinate X to the cell length L. The scaled 
variables are deaoted by i,. and I respectively 



(5) 

Scaling Eqs. (3) and (4). by using these scaled variables. 
we obtain the following boundary value problem (BVP) 

I ~=-+&)-v<,,,). (O<x<l) 
I” 

c a(0) =o, u(l) =I(, =I,.,/I,. 

In this BVP the first-order differential equation for the utili- 
zation is supplied with two boundary conditions. This implies 
that the solution of the BVP is twofold, i.e. is given by the 
set (u(x), V,,,). This solution depends n the product ri,,, 
rather than on the individual data for r and i,.. However. the 
local current density does depend on these individual data, 
e.g. the average current density over the whole cell is equal 
to i,“U,. 

Once the BVP has been solved. the local current density i 
can be calculated from 

u. Oxidant utilization in an MCFC is often sufficient low to 
have littleoverall effect [6].becausein practicelargeoxidant 
Rows are used for cooling. Therefore and for reasons of sim- 
plicity, it is convenient to neglect oxidant utilization in the 
‘basic MCFC model’. The representation of the equilibrium 
potectial V_,(u) inside an MCFC for zero oxidant utilization 
isderived in Appendix A, assuming temperature and pressure 
to be uniform. Furthermore, we do not consider the methane 
reforming reaction and assume that the water-gas shift reac- 
tion is in equilibrium. The expression resulting for V,(u) 
turns out to be complicated and unsuitable for analytical pur- 
poses; it can be used in numerical computations, whose 
resultsaregivenin thenextsections. Inordertomakeasimple 
mathematical analysis of the ‘basic model’ possible. a linear 
approximation for the equilibrium potential will be derived 
belOW. 

The Nernst law gives the equilibrium potential in terms of 
partial pressures p, of the species in the pmcess flows 

(7) 

i(s) =ii.$(r), (O<x< I) 

Note that the individual values for V,(O) and V,.,, are irrel- 
evant, because only the overpotential (V,(u) - V,,,,) 
appears in the BVP. Hence, the difference V,( 0) - V,.,, is 
important; it is this difference rather than the individual terms 
that influence the local current density i and the local fuel 
utilization u. 

In this paper, the ‘basic model’ is only used to calculate 
the electrical variables. i.e. the current density, i, the fuel 
utilization. U(X). and the cell voltage V,,,,. We distinguish 
this set of variables from the set of so-called hydrodynamical 
variables. In fluid dynamics the term hydrodynamical varia- 
bles refers to the hydrostatic pressure, the fluid density and 
the velocity of a fluid flow. In a fuel cell model. thecalculation 
of hydrodynamical variables requires a detailed description 
of the configuration of the gas channels. However, as long as 
sufficient gas flow is allowed for. these details appear to be 
irrelevant for the calculation of the va:iables i, u and V,,,,. 
within the ‘basic model’. 

Solving the BVP requires an expression for the local equi- 
librium potential in terms of the utilization U. To obtain an 
expression for V,(u) we simply assume fuct and oxidant to 
be a mixture of ideal gases and neglect concentration gradi- 
ems over a cross section of a gas channel (ideal mixing in 
the gas phase). 

3. The linearized Nernst potential for a ‘basic MCFC 
model’ 

In this section the general ‘basic model’ is specified for an 
MCFC. This requires the representation of the equilibrium 
potential Inside an MCFC as a function of the fuel utilization 

where .I? is determined by thermodynamics and the super- 
scripts ‘a’ or ‘c’ refer, respectively, to the anode or cathode 
gas composition. As we assume a homogeneouscathode flow, 
the second term on the right-hand side of F!q (7) is consid- 
ered to be independent ofposition. In Appendix A it is shown 
I:ow the partial pressures in the last term of Eq. (7) can be 
expressed in terms of the fuel utilization u. 

At 650 “C the factor Ri%F in the Nemst equation isequal 
to about 40 mV. which is small in comparison with common 
values for the OCV (typical loo0 mV). The Nemst potential 
V,,(u) in Eq. (7) varies thus moderately with u. except if 
any of the partial pressures in the last logarithmic term is very 
low. The shift reaction will not cause extreme low partial 
pressures due to its equilibrium state. So. only for values of 
II near zero or unity we may expect big changes in the loga- 
rithmic term. Nevertheless. Fig. 2 shows that for most values 
of u. an accurate approximation v*,(u) for the local equilib- 
rium potential V,(u) can be obtained from a linearization 

v:(u) =VG(O) -CU. 

P=co”sta”t= -~formostu~(O,I) (8) 

The constant of proportion a in the linearized equilibrium 
potential is not exactly defined. but must be a characteristic 
value for the derivative of -V._(u) with respect to a. Note 
that the dimension of u is V. since u is dimensionless. 

As shown in Fig. 2, the local equilibrium potential V,(u) 
inside an MCFC contains an initia: dip near the origin. i.e. 
the equilibrium potential decreases more rapidly near 1r=0 
than in the neighborhood of I(= 112. Moreover. the equilib 
rium potential also decreases fast near the point of singularity 
u = I. Apparently. a suitable value for u is obtained if the 
derivative of the equilibrium potential is determined in the 
point of inflection, i.e. the point, say I(*, where the second 



p_(O) is 30 mV lower than the actual CCV. The boundaries 

for u given in Eq. (9) arc not strict, but give an idea of the 
interval for which the linear approxinwion is accurate. 

If the local equilibrium potential of a low-temperaturecell 

is linearized, then the difference QO) -V,(O) must not 

be confused with the correction term V,_ that WEU introduced 
in the previous section. 

Machielse [ I] determinedexperimentally Ihequasi-ohmic 

resistance r for an MCFC to be I. 195 C cm’, see Table 2. He 

also applied the PSI (Physical Science!~ Inc.) cell model [ 81 
for his experimental conditions and obtained a 10% lower 

value of 1.08 0 cm’. Throughout th,s paper we will use 

r= 1.08 11 cm’. Only in Section 5, where 8 comparison is 
made with the experimental results ob:ained by Machielse, 

we will use I= I I95 $1 cm’. 

derivative of the equilibrium potential with respect to N is 
zero. Then WC have 

%(u*) =o. %(u*) = -a, 

Lgo, =V,.,(u”) +au* ( 8=) 

For instance, consider the inlet fuel composition presented in 

Table 2 and a homogeneous cathode Row of 70% air and 30% 
C02. In Table 2 the mole fractions after equilibrium are based 
on a value of K=OS for the equilibrium constant of the 

reverse shift reaction !corresponding to a cell temperature of 
650 “C and atmospheric pressure [ 71). For the fuel compo- 

sition presented in Table 2. the point of inflection of the 
function V,,(U) can be determined numerically to be 
u* = 0.50. In this point the slope of V,(u) is 0.18 V. Hence 
in this case the linear approximation for the equilibrium 

potential is given by 

V,r,(u) = 1.03-O.lSu, (0.2~~50.8) (9) 

where the actual OCV for this gas composition is I .06 V. 
Because of the initial dip in the Nernst potential. the value of 

4. Analytical solutions of the ‘basic model’ 

The BVP that was introduced in Section 2 can only be 

solved in closed form for some simplified versions of the 
equilibrium potential V,,(u). In this section no analytical 
solution of the BVP is derived, assuming the function V,(u) 
to bc linear. In Section 3 it was shown for an MCFC that 
V,,(u) is almost linear up to high values for the fuel utiliza- 

tion U. The analytical solution will be thus fairly accurate up 

to high values for the total fuel utilization u,. The obtained 
analytical expressions will therefore apply to problems with 
practical values for u,. 

Also approximate solutions for the BVP will be derived 

and in Section 4.2 the inlluence of the initial dip in the equi- 

librium potential V,,( II) will be considered. 

4.1. Analyrical cell model 

The cell model that is obtained if a linear function is used 

to describe the equilibrium potential VW(u) in the BVP 

is referred to as the ‘analytical cell model’. The problem 
is to lind a function II: IO.1 ]+ [O.u, 1 and a constant ye,, 

satisfying 



1 ~=-&(O,-..-v:.,,,. (O<r<l) 

(u(O) =o, u(l)=u, 

wbele a (delined by Eq. ( 8) ) and ri,. are positive constants. 
Integration of the differential equation with respect to x 

from zero to a point in the interval [O,l] gives 

(IO) 

This function must satisfy the end condition u( I ) = u, Using 
this condition, the following relation between V*,, and a, 
can be derived 

Tk set (u(x). vf,,,) given by Eqs. (10) and (11) is the 
solution of the Analytical Cell Model. The local current den- 

sity inside the cell can be calculated from this analytical 

solution, using Eq. (6): 

i ( x )  = i  eu= V.*(O) - VE”.. 
‘“dx r 

ex -2 (O<x<l) 
P( 1 

Note that Eq. ( I I) is linear with respect to the total utili- 

zation a,. Thus, the use of a linearized Nernst equation results 
in an expression for the cell voltage that shows a linear 

dependence on a,. In the following an approximation for 

v*,,, will be derived that is linear with respect to the rotal 

utiliza;ion u, as well as IO the average current density i,.u,. 

We start the derivation of this double linear expression for 
k$,,, with the introduction of two more relations, i.e. arelation 

between i(0) and i( 1) and a relation between the cell voltage 
and the electrical losses due IO the quasi-ohmic resistance. r. 

Acccrding IO Eq. ( 12) the following identity holds 

i(l)-i(O)= 
v:(o) - Kt,, 

r (exF(-+J- I) 

The cell voltage !&, can be eliminated from this identity. 

using Eq. (1 I). Then the following simple relation between 
thecurrentdensity i(0) atthecellinletandthecurrentdensity 
i( 1) at the cell outlet is obtained 

i(l)--i(O)=-7 

In order to obtain a relation between the cell voltage and 

the quasi-ohmic losses we multiply both sides of tie differ- 
ential equation in the analytical cell model by du1d.x and 
integrate with respect tax from zero to unity 

Rewriting this result. using the first part of Eq. ( 12) and the 
following definition of the average current density i,, 

i,,= lin,,, (14) 

we obtain 

Note that Eq. (15) is exact within the analytical cell model. 
This equation states that the cell voltage is equal to the aver- 
age value of the linearized equilibrium potential inside the 

cell, minus the total loss in cell voltage due IO thequasi-ohmic 
resistance r. 

II is possible to calculate the integral in Eq. (15) by using 
the exponential relation for the local current density i(r) 
given by Eq. (12). However. thii is not very practical since 
the expression for the cell voltage, obtained in this way. will 
be equivalent to the expression for vc.,, given in Eq. ( 11). 
Although the exact current distribution is knowa to be expo- 
nential. it is convenient to approximate the current density 
i(r) in the last term of F.q. ( 15) in order to obtain appmxi- 

mate expressions for the cell voltage that are more simple 

thantheexactexpression inEq. (11).Tolhisend,weassume 
i(x) either to be constant (zero-order approximation) or to 
be linearly decreasing (first-order approximation). The 
appmximatecurrentdistributionsmusthavethesameaverage 



current density i,,., as the exact (i.e. the exponential) current 
distribution (see Fig. 3 ) 

Note that the integral in Eq. ( 15) is equal to the average 
value of i’ over the whole cell, which is always greater than 
or equal to the square of the average current density, i.e. iz., 

(from the LemmaofCauchy-Schwarz [9] ).Thismeansthat 
the last term in Eq. (1.5). that represents the tolal loss in cell 
voltage due to the quasi-ohmic resistance, r, is minimum for 
a homogeneous current distribution 

I 
I 

I 
i’(*) dxzri,,,, (16) 

twL ” 

where the equality holds if (and only if) the current density 
i(x) is equal to the average current density i,,., for all x. An 
upper hound for the cell voltage v*,,, is thus obtained if we 

twattne a homogeneous current distribution. i(x) -i..,, in 

order to approximate the integral in Eq. (15). Then the zero- 
order approximation for the cell voltage C$, is obtained. This 
approximation does not account for the overpotential, say A,, 
due to the non-homogeneity of the current distribution 

A, = 0 in zero-order approximation (17) 

where A, 20 can be omitted in order to obtain the double 

linear, zero-ordrr approximation for y$,. This double linear 

relation for the cell voltage was also derived by Machielse 

[ I] and Hcmmes [ 21, using, howevcr, different assumptions 
and approxknations. The second term on the right-hand side 
of Eq. ( 17) is called the Nernst loss and is the direct conse- 
quence of the +xeasc in P-(,(u) in the direction of the cell 
outlet. The term ri,,., represents the loss in cell voltage due lo 
the quasi-ohmic resistance, r, in the cast of a homogeneous 

current distribution. Furthermore, we have shown that A, is 

the extra overpotential due to the non-homogeneity of the 
current disttibution inside the cell. 

Another possibility is the use of a linear or first-order 
approxim+ion for the local current density. According to the 

identity in Eq. ( 13) this means that i(x) is approximated by 

PU, I 
i(x) =&,+T j-x 

( I 
, first-order approximation 

Note that in this first-order approximation, the average 
current density is still equal to &. Using the first-order 

approximation for the lcal current density to approximate 

the integral in Eq. ( 15). we obtain the following expression 

for v*,,, 

V:,,= V%(O) -fau, -ri,.,-~Zz,i,,+A,. 

AZ = 0 in first-order approximation (18) 

where A2 is the inaccuracy tn the first-order approximation 
and the dimensionless number Z is defined by 

z=$o 
I” 

The signilicance of the number Z will be explained in 
Section 6. 

Comparing Eqs. (17) and (18) we find that the extra 

overpotcntial A, due to the non-homogeneity of the cttrrent 
distribution inside the cell is given by 

A, = :Z’ri,,., -AZ. 

A,= 0 in first-order approximation (20) 

Although the first-order approximation is not exact, it will 
tom out that the expression in Eq. (20) with A,=0 is very 
close to the exact value of A,. 

Furthermote, it will be illustrated by an example that the 

obtained approximations for V& are accurate. notwithstattd- 
ing the fact that simple estimations for the local current den- 
sity were used in the derivations. Note that, once cc,, has 
been calculated using one of the Eqs. ( 17). (18) or (I I ), 
based on the zem- or first-order approximation for the local 
ctment density or the exact solution, respectively. a more 

accurate expression for the local current density can be 
obtained from Eq. (12). 

We consider the MCFC as an example. For an MCFC 
typical values for Pw(0), a and r are P_(O) = 1.03 V, 
a = I80 mV and r = I .08 n cm*, rcspcctively. The equivalent 

input current i,. is assumed to be 200 mA/cn?. At a total 

utilization of u, =0.75, the average current density is equal 

to 150 mA/cm’, which is a standard value for an MCFC 
operation. Within the analytical cell model the cell voltage 
V& can be calculated exactly from Eq. ( I 1) to be 0.7912 V. 
The zero-order approximation in Eq. (17) gives an upper 

hound which is 9.3 mV larger. i.e. Fell =0.8005 -A, V. This 

means that we have an extra decrease in cell voltage of 9.3 
mV due to anon-homogeneouscttrrentdistribution.The first- 
order approximations in Eqs. ( 18) and (20) torn out to be 
very accurate. F.q. ( 18) with A*=0 yields a cell voltage of 
0.7911 V compared with 0.7912 V for the exact solution. 

Hence, A2 is, in fact, in the order of 0. I mV. which is nogli- 

gibly small. 
Fig. 3 shows the current distribution. obtained from Eq. 

(12) as well as from numerical computations based on the 
non-linearized Ncrnst equation. As a consequence of the ini- 
tial dip in the Nernst potential (see Fig. 2 for small values of 
the local fuel utilization) the analytically calculated current 
distribution shows a much smaller current density near the 

cell inlet, compared with the numerically calculated torrent 
distribution. This implies that the analytically calculatedcur- 
rent density will be somewhat larger in other parts of the cell, 
since the average current density was set equal for both 

current distributions. 

For the MCFC example (u, =0.75). the extra losses in 
cell voltage due to the non-homogeneity of the current dis- 
tribution are small (in the order of IO mV). More general, 



but still within the assumptions of the ‘basic model’. we can 
conclude that at normal (high eflicient) operation, the extra 
electrical losses due to a non-homogeneous current distribu- 
tion inside an isothermal fuel cell are small and will be close 
to :he estimation (Zz/3)&, given by Eq. (20). 

4.2. Extended analytical cell model 

In this section we will consider the influence of the initial 
dip in the Nernst equation on the cell voltage. To this end, 
we will use a partly linearized equilibrium potential, instead 
of Qu). In the so-called ‘extended analytical cell model’ 
we consider the loca! equilibrium potential to be given by 
V,,:u) for I( <II* and Vry(a) for u>u*. i.e. the function that 
follows the exact Nemst equation up to the point of inflection 
U* (see Eq. (8a) ) and then connects with the linear approx- 
imation Pi(u) as used in the analytical cell model. 

It is shown in Appendix B that the cell voltage V:;;, COT- 
responding with this partly linearized Nemst equation can be 
approximated by 

u, +O, zero-order appmximation (21) 

u, #O. first-order approximation (221 

with the constant C equal to the surface between the linear 
approximation v”,(u) and the initial dip in V,(u). Again the 
zero- and first-order approximations refer, respectively, to a 
constant and linearly decreasing current density i(x). Com- 
paring the approximations for v*,,, and V:$, we see that the 
influence of the initial dip in the Nernst equation on the cell 
voltage can be taken into account by an extra term. i.e. C/u,. 

In the following example it is made clear that Vz$ is a very 
accurate approximation for the cell voltage V,,,, i.e. the cell 
voltage corresponding with the non-linearized Nemst equa- 
tion. At least, as shown in Appendix B, for values of u, in 
the interval forwhichthe linearfitoftheequilibriumpotential 
is accurate (see Section 3) 

V,.,,=V:$,, 0.25u,50.8 

The accuracy of both approximations in Eqs. (21) and 
(22) will be illustratedon the basisofasimilarMCFCexam- 
ple as was introduced at the end of Section 4.1. However. we 
now consider different values for i,. and u,, keeping the aver- 
age current density i”., = i,.u, constant at 150 mAlcn?. For 
the fuel composition as presented in Table 2, the value of C 
was numerically determined to be C = 3 mV. Fig. 4 shows 
the cell voltage as a function of the total fuel utilization. u,, 
for a constant average current density i,, = I50 mAlcm2, 
according to the zero-order approximation in Eq. (21) as 
well as to the first-order approximation in Eq. (22). T%e 

difference between these two approximations represents the 
extra loss in cell voltage due to the non-homogeneity of the 
current distribution. 

The results of numerical computations based on the non- 
linearized Nernst equation are also plotted in Fig. 4. The 
approximations appear to be accurate up to a mud fuel utili- 
zation of 80%. For values of u, larger than 0.8 the lineariv 
tion of the Nemst equation fails and the approximations start 
deviating. 

5. Con~parisoa of the modeI. with measurements 

In the preceding sections a ‘basic model’ suitable for a 
numerical approach and an ‘analytical cell model’ have been 
introduced. In this section, some resuhs obtained from these 
models will be compared with experimental revolts presented 
by Machielse [ I]. This comparison is mainly directed on the 
cell voltage of an MCFC as a function of the fuel utilization, 
in particular on the following identity derived from the 
Eqs. (22). (14) and (19) 

1 a2 1 
= --a--u,-c,, U,#O 

2 6&, u, 
(23) 

where the index indicates that the partial derivative holds 
for constant values of the average current density 
(i,, = constant). It will be made clear that this derivative is 
ahnosl constant for nearly all relevant values of u,. II strongly 
determines the relation between the cell voltage and the total 
fuel utilization u,. 

The conditions outlined in Section 3 are the same as used 
by Machielse. The values a=180 mV, C=3 mV and 



r= I. 195 R cm2 will thus be used in the calculations. For an 
average current density of 150 m&/cm’ the three terms on 

the right-hand side of Eq. (23) are successively -90, - 15 

and - 12 mV for uI = 112, the first term being dominant. 
(Note that this term is independent of at, whereas the two 
small terms in the expression for the derivative are not.) 
Nevertheless. the sum of the terms appears to be approxi- 
mately constant for a wide range of values for u,. as is clear 
from the almost linear curves in Fig. 4. Calculating the aver- 

age value of Ihe derivative in Eq. (23) over the interval from 

u, = 0.2 to u, = 0.8, we find 

= - 124 mV. analytical; i,,= 150 mA/cmz 

This value will be compared with experimental data obtained 

by Machielse [ II. His experiments were carried out on an 
isothermal 1000 cm2 MCFC bench-scale cell. 

Machielse determined the cell voltage as a function of the 
total fuel utilization. imposing constant average current den- 
sities. The results are reproduced, with permission, in Fig. 5. 
This figure shows three sets of experimental results, each for 
a constant average current density. As can be seen. the exper- 
imental results within a set can he connected by an almost 
straight line. from which we could determine 

( 1 av,,,, 
at+ I_* 

5 - 1x5 to - 175 mV. experimental 

where the exacl value of the derivative depends on the 
imposed value of i_,. Unfortunately, these values are not 
given in Ref. [ Il. However, the verttcal distances in Fig. 5 
between two sets of measurements are proportional lo the 

current differences, because of the term pi,,., in the analytical 
approximations in Eqs. (21) and (22) (dashed curves). 
Thus, the average current density i.., varies considerably for 
the three sets of measurements and in accordance with the 

analytical relation in Eq. (23), the slope of a line through a 
set of experimental points depends on the imposed value of 
i,.,. As the bottom set of experimental points in Fig. 5 yields 
a slope of approximately - 125 mV, very close to the ana- 
lytxal value, it is most likely that this set corresponds to an 

average current density i,., = I50 mA/cm’. 

For a more detailed comparison of the experimental results 

obtained by Machielse and the theoretical results obtained 
from either the basic model (numerical computations) or the 
extended analytical cell model, we assumed that the meas- 
urements were carried out for average current densities of 50, 

100 and 150 mA/crn’. For these current densities the corre- 

sponding analytical and numerical results were presented in 
Fig. 5 together with the expenmental results. As shown by 
this figure, theexperimentaland theoretical resultsareinvery 
good agreement. 

6. Derivation of input-output relations 

As already remarked in the introduction, an analytical 
approach can contribute to a better understanding of fuel cell 
behaviour. To this end, some input-output relations will be 

derived in this section, i.e. fuel cell perforn~nce will he 

expressed in terms of independent variables. 
Since the constant of proportion (I in the linearized Nemst 

equation can be determined from the fuel composition (see 
Section 3). only two independent variables appear in the 
mathematical fortntdation of the analytical cell model, i.e. ii. 

and U, (see Section 4. I ). However, in practice, the two ‘con- 
trol kaobs’ or independent variables that govern the perform- 
ance of an isothermal fuel cell are rhe ex&mal load resistance 
RI& and the equivalent input current density i,W Recall that 
i,. can be calculated from Faraday’s law. Forsmallertestcells 
one can connect an electronic load that keeps the cell voltage 
or total cell current at a conslant value (potentiostatic or 

galvanosratic control. respectively). 

When the pair (Rad, i,.) is considered as the set of inde- 
pendent variables, instead of (u,. i,.), it is convenient to write 
the cell voltage as the product of the load resistance and the 

cell currentl,,,. Relating the load resistance to the cell surface 
BL we then obtain 

%=ZL&.,= BLJL&., (24) 

On the other hand, the cell voltage cCa. in the zero-order 
approximation, is given by Eq. (17). Eliminating the cell 
,roltage we find. upon rearrangement 

(25) 



This current input-output relation gives the average current 
density i,., as a function of the ‘two control knobs’, R,,, and 
L. 

Eq. (25) looks hke Ohm’s law and contains three ‘rcsis- 
taaces’, all having the dimension fl n?: the scaled external 
load resistance, the internal cell resistance. r, and a term a/ 
(2iJ that we call ‘the utilization resistance’. The utilization 
rcsistancc is due to the Ncrnst loss and decrcases as the fuel 
flow increases. (It vanishes in thelimitingcaseofaninfinitely 
large fuel Row. in accordance with the fact that in that case 
fuel utilization is effectively zero; so achievmg, for a fixed 
R lurd. the maximum output current i_. (The fuel composi- 
tion is the same throughout the cell and a homogeneous cur- 
rent distribution is established.) In this limiting case the 
zero-order approximation is exact and yields 

Recalling Eq. ( 19) we see that the dimensionless number 
Z was actually defined as the ratio of two resistances, i.e. the 
utilization resistance a/(2&.) andthequasi-ohmicresistance, 
r. Below it will be made clear that it is the number Z that 
largely determines input-output relations of fuel cells. 

To obtain the output current density as a function of the 
cell voltage and the numberzwe solve the zero-orderapprox- 
imation in Eq. ( 17) for U, and multiply the obtained equation 
by i,. 

= v:(o) -v:,, 
(I+Z)r ’ 

zero-order approximation (26) 

Multiplying Eq. (26) by For,,, we obtain the power output 
pO.,= i”“,v;*,,, per unit cell surface 

P,>“, = 
v:,(o) - VLvr 

( 1 + Z)r LE”’ 
zero-order approximation 

(27) 

Note that p.., as a function of V,,, is a parabola with its 
maximumat v*,,= Pw(0)/2.1nFig. 6theparabolasforZ=O 
andZ=OS (i.e. forconstantii.) areshown.Theoutputpower 
at constant utilization is given by tbe equation that is obtained 
if the following identity is substituted into Eq. (27) 

z=u,/ 
( 
$Jo, -V&) -It, 

1 

This latter identity easily follows from Eq. (26). using 
i,.,=i,,u,=u,ul(2Zr). 

Maximum power output means minimum capital costs for 
fuel cell stacks. Consequently, one may be tempted to operate 
a fuel cell at a cell voltage VW,, = q(O)/2 and a fuel utili- 
zation u,, corresponding with the maximum of a parabola in 
Fig. 6. However from Eqs. (24) and (25) it can be shown. 
by tlimination of i,,, that at this point BLRl_d=r+ (al 
Zi,.) = (I +Z)r. Hence, the power loss due to internal hoar 

-0 0.1 0.4 0.6 0.8 I I.2 

“,, wdu 

production by the quasi-ohmic resistance. r. is I/( 1 +Z) 
times the delivered power in the form of electricity, which is 
undesirably high. Typical values for aa MCFC at nomml 
(high efiicient) operation are Z-O.5 and V&=0.8 V. Then 
it follows from Eq. (27) that the output power density p_, 
can increase by 50% f0rZ-r 0, i.e. for&.-m, even atconstant 
cell voltage. A further increase in power output can be 
achieved by decreasing the cell voltage by lowering RI& 

Fig. 6 shows that for small Z and for a cell voltage equal to 
half the value of the OCV, a total increase of 100% respect 
to typical operation, in power output occurs (i.e. from 0.11 
to 0.2-0.25 W/cm*). However. at these co&ditions 
EL&~ = r, which is clearly nor an optimum situation forfuel 
cell 0peratic.n. 

More accurate input-output relations can be obtained in a 
similar way, using the first-order approximation in Eq. (22). 
For instance, analogous to the derivation of Eq. (25) it can 
be shown that 

-+% U, 20; first-order approximation (28) 
oq 

Below we will successively consider examples of the cur- 
rent-mpat output Eqs. (25) and (28). assuming a fixed load 
resistance. Examples of i,, as a function of RM for a fixed 
equivalent input current i,. are given in Ref. [IO]. 

In Fig. 7 the delivered current of an MCFC as given by Eq. 
(25). is plotted as a function of the variable i,. for a constant 
(andsmall) loadresislaceBLR,,=4~cm*.Againthesame 
parameter values, listed in Table 2, have been used. 

Note that in Fig. 7, the slope of a line connecting a point 
onthecurveandtheoriginyiclds thetotalutilizationu, = i,,/ 
iin as indicated in the figure. Recall that the maximum output 
current density i_ is achieved for an infinitely large value 
of i,.. Imagine that. starting from the point for which i,. =0.8 



equivalent input cumn, den&y iin (A/cm2) 

fig. 7.Ou,pu, curen, densby as a function of the equivatca inpa currcn, 
density for an MCFC a, a cans,an, load resis,ancT. t---j representing ,be 
zemwderappmxima,ioninEq. t?S).and t-----j acco,dingtonumaiwl 
mmpuwtions. Lines of con~,an, uliliwlian and ,he maxmum achwablr 
cumem. based on an (XV of “JO, = I .06 V. are also shown. 

A/cm*, the fuel supply will be decreased. As this means that 
i,. decreases, this will result in an increase in the total fuel 
utilization. ui. Since ui cannot be higher than unity the line 
u, = 1 represents a limit. However. for large values of ui. the 
linearization of the Nemst equation fails and consequently 
the analytical solution intersects the line ai = I (as shown in 
Fig. 7). Since this is not possible, the analytical expression 
in Eq. (25) cannot be used for very small values of i,,. 
Evidently, when ui is almost unity and we continue to 
decrease ii., the output current density must approximately 
follow the line ut = 1 down to the origin. Numerical calcu- 
lations, based on the non-linearized Nems~ equation, show a 
quite sharp transition from the curved line according to Eq. 
(25) to the line ut = 1. For ui >0.8 the analytical solution 
&uts deviating from the numerical solution, but significant 
deviations occur only for very high values of Ihe total fuel 
utilization at. The analytical expression in Eq. (25) is thus 
very accum~e up to high utilizations. 

Theou~putcurrent density i,,according toEq. (28) nearly 
coincides with the numerical solution up to very high values 
for the total fuel utilization ut and is therefore not plotted in 
Fig. 7. A close-up of the curve obtained from Eq. ( 28) is 
given in Fig. 8. This figure also gives results for the value 
BUM= 5 fi cm’ (bottom curves), which is a typical value 
for the load resistance of an MCFC at normal operation 
(i,,= 150-16OmA/cm*). 

It is evident that optimum conditions for fuel cell operation 
are near the sharp transition point at which the output current 
density diverge from the analytical solution. Because other- 
wise. either fuel utilization becomes too high and the cell 
voltage (given by BU,_&,) drops strongly, or the uriliza- 
tion is too low and then not sufficient hydrogen is converted. 
which in general leads to a lower system efficiency. Fig. 7 

0.14 
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equivalent input cumnt density iin (Alcm2) 

Fig. 8. Close-up of Ibe ou,pu, current density as a function of the equivaten, 
input wren, density for an MCFC. showing very good agreemen, bctwem 
t-- -) ,be tint-order qpmxmadon in Eq. (28). and t---b numencat 
compu,adons. 

also shows that the decrease in i.., is small up to very high 
values of the total utilization u,. Hence, in principle, high 
utilizations can be achieved without a large decrease in cell 
voltage or output power density (i.e. BI.&,,i~.,). 

7. Conclusions 

The following conclusions could be drawn from the present 
study. 

1. A simple stationary ‘basic model’ was developed. based 
on the assumptions shown in Table 1. The ‘basic model’ can 
be used to describe isothermal fuel cell behaviour, independ- 
ent of the type of fuel cell. 

2. It was shown that the modeling of fuel cells can he 
simplified by the introduction of: 
0 The ‘equivalent input current’. I,., being the maximum 

amount of current that is produced in the case of complete 
fuel utilization. It can be calculated from the gas compo- 
sition and the gas Row rate, using Faraday’s law. 

0 A linear relation for the local Nemst potential as a function 
of the fuel utilization. 
3. Linearization of the Nemst potential in the ‘basic model’ 

results in a cell model that can be solved analytically. For an 
MCFC the results obtained from the analytical cell model are 
found to be accurate up to high fuel utilizations, when com- 
pared with numerical computations based on the non-linear- 
ized Nemst equation. The analytical cell model also agrees 
well with measurements obtained by Machielse [I] on an 
isothermal 1000 cm* MCFC bench-scale cell. 

4. The influence of simplified current distributions in the 
cell was examined: a homogeneous current density and a 
linearly decreasing curtent density were compared with a 



realistic torrent distribution. For an MCFC the loss in cell 
voltage corresponding with a homogeneous correm distri- 
bution is almost 10 mV lower than the actual loss in cell 
voltage. 

5. The ‘basic model’ contains two independent variables, 
which means essentially that a fuel cell has two ‘control 
knobs’, i.e. the external load resistance R,,, and the fuel 
supply through the equivalent input current I,.. 

6. The analytical cell model can be used to express the cell 
current and the cell voltage in terms of the independent var- 
iables. EQ. ( 17) for the cell voltage clearly shows the over- 
potential due to fuel utilization. This so-called ‘Nernst loss’, 
is proportional to the fuel utilization and the slope a of the 
linearized Nemst equation. Eq. (25) for the cell current is 
analogous to Ohm’s law. The influence of the Nemst loss 
appears as an ‘utilization resistance’. being proportional to 
the slope (1 and inversely proportional to the equivalent input 
current, I,.. 

7. Fuel cells can deliver large peak powers, of coarse at 
the expense of losing efficiency. Compared with normal 
(high efficient) operation. the power output of an MCFC can 
be increased by about 50% by just increasing the input flow 
even at constant cell voltage. By also decreasing the load 
resistance RI,, and consequently the cell voltage. the power 
output can be increased by about 100%. 

8. Fuel cells can lx operated at high utilizations without a 
large decrease in cell voltage or output power density. 

8. List of symbols 

decrease in cell voltage due to the non- 
homogeneity of the cwrent distribution. V 
inaccuracy in the first-order approximation, V 
width of the rectangular cell. m 
surface between the initial dip in V,(u) and the 
linearized function v*,(u). V 
molar concentration of the gas mixture, mol/m’ 
constant of Faraday. C/mol 
loeat current density, A/m* 
total current equivalent of the fuel supply, A 
total current equivalent of the fuel supply per unit 
cell surface. A/m2 
total current output of a fuel cell, A 
total current output of a fuel cell per unit cell 
surface: average current density, A/m2 
maximum output current density for a fixed value 
of the load resistance, Afm’ 
equilibrium constant for concentrations in the 
shift reaction 
length of the rectangular cell, m 
total number of moles in a contml volume, mol 
number of moled of a species in a control 
volume. mol 
output power density, Wlm’ 

partial pressure of the ith species in the fuel, NI 
m2 
constant quasi-ohmic resistance. n mz 
external load resistance, R 
universal gas constant, J/(mol K) 
absolute cell temperature. E 
fuel utilization 
point of ieRection of the function V,( (0 
total fuel utilization, i.e. value of u at the cell 
outlet 
utilization of CO 
Nemst potential as a foncti3n of the utilization u, 
V 
linear fit for V,(u), V 
cell voltage, V 
intercept of linearized polarization curve 
(1’ =OfortheMCFC),V CCS 
cell voltage if the Nemst equation is linear with 
respect to u, v 
cell voltage corresponding with a partly 
linearized Nemst equation, V 
scaled (i.e. relative) distance to the cell inlet 
distance to the cell inlet, m 
mole fraction of the ith species 
dimensionless number (see Eq. ( 19)) 

cl characteristic value for the derivative of 
-V,(u) with respect to u, V 

I 
local overpotential, V 
integration variable 

Abbreuiations 

OCV open-circuit voltage, i.e. V,(O) 
MCFC molten carbonate fuel cell 
ODE ordinary differential equation 
BVP boundary value problem 

Appendix A. The equilibrium (or Nemst) p&ntial3~ a 
hction of the utilization in the case of an MCFC 

In this appendix an expression for the local equilibrium 
potential inside an MCFC as a function of the local foci 
~tilization.u,isderived.Thederivationishasedonacommon 
representation of the Nemst equation and on the assumptions 
2. 3, 6 and 7 given in Table I. Fordtermore. we neglect 
diffusion effects in the gas phase. i.e. the anode gases ate 
considered to ba homogeneous over the cmss section of a 
channel (conform to assumption 4). We also neglect the 
methane reforming reaction and distinguish only four chem- 
ical species in the fuel Row. i.e. I&CO, Hz0 andC02. Partial 
properties ze denoted with an index ie (I....A). using the 
following sequence for the species 



i I 2 3 4 
Species H, CO H?O CO,, 

The cell half-reaction at the anode side of an MCFC is 
given by 

H,+COj’- +H,O+C0,+2e- (Al) 

Assuming constant partial pressures for the oxidant spe- 
cies, the corresponding Nemst equation can be written as 

RT p,(O) RT PI(U) 
v~~~‘=~~~“~-2F’“~+2F’n~ 

(A21 

where V,(O) is the OCV The OCV can be calculated from 
the inlet gas compositions which are assumed to be known. 
If the fuel behaves like an ideal gas WE can use the idea! gas 
law to determine the partial pressurzs.p,, of the components 

~0 = cRTX ,I i=1,...,4 (A3) 

with X, the mole fraction of the ith species, c the molar con- 
centration of the mixturc and R the universal gas constant. 
Note that c is constant throughout the cell, since we assumed 
temperature and pressure to be uniform. Using Eq. (A3) to 
eliminate tbe partial pressures fmm the Nemst Eq. (A2) we 
obtain 

RT X,(O) RT X,(n) -+-Ill- 
vw(u) =“&‘) -$“X,(O)X,(O) 2F b(u)X,(u) 

(A4) 

Hence, to express the local equilibrium potential in terms of 
u we have to determine the mole fractions X, as functions of 
u. 

To this end, the number n,(O), (i= l....A) is defined as 
the number of moles of the ith species that enters the cell at 
the anode side per unit 9i time. The total number of moles 
n(O) that enters at the anode side, per unit of time, is given 
by the sum of n,(O) over all i. The numbers n,(u) and n(u) 
are defined in an analogous way and are relateo to one and 
the same volume element. following the motion of the Row. 
The mole fractions of the species as a function of the utili- 
zation can be written as 

X,(u) =z, i= 1. . ...4 

The numbers n,(a) in Eq. (A5) depend not only on the 
conversion of hydrogen by the electrochemical reaction. but 
also on the production of hydrogen due to the water-gas shift 
reaction 

CO+H,O*CO,+H, (A6) 

The total number of moles H2 that can be converted by the 
electrochemical reaction in the case of complete fuel utili- 
zation is equal to the number of moles HZ and CO that enters 
the cell. Since the utilization u(x) is defined as the fraction 
of this supply that is convened in the interval [OS] we have 

n,(u)+n,(u)=(n,(O)+n*(O))(l-u) (A7) 

The total number of moles CO that is converted by the 
shift reaction if complete fuel utilization is achieved is given 
by n,(O). The fraction of this number that is converted 
between the cell inlet and the position that corresponds with 
the utilization K is denoted by u(u). Hence. by the definition 
of I) we also have 

&(a)=%(O)(I-@)) (A8) 

Below, the mole fractions X,, as given by Eq. (A5), are 
expressed in terms of u and u(u). The equilibrium potential 
in terms of u and u(u) follows from the representation of the 
Nernst equation in Eq. (A4) Next. the equilibrium condition 
for the shift reaction is used to determine u as a function of 
a, after which the equilibrium potential can be expressed in 
terms of u only. 

In order to determine the mole fractions as functions of u 
andu(u) we first subtmctEq. (A8) from Eq. (A7),yielding 

n,(u) =nt(O) - (n,(O) +n,(O))u+n,(O)u(u) (A9) 

The second tern, in the right-hand side of Eq. (A9) gives 
the decrease in the number n,( u) due to the electrochemical 
reaction. Hence, from the reaction Eq. (Al) it follows that 
in the control volume (n,(O) +nz(0))u moles CO, and as 
many moles Hz0 are produced by the electrochemical reac- 
tion. The last term in !Zq. (A9) is equal to the !wmber of 
moles HZ produced by the shift reaction. From me reaction 
in Eq. (A6) it follows that in the control volume n,(O)u( u) 
moles CO, are produced and as many moles Hz0 are con- 
verted by the shift reaction. Hence, the numbers n,(u) and 
n,(u) are given by, respectively 

n,(u) =n,(O) +(n,(O) +nz(0))u-nz(O)u(u) 

n,(u)=i?~(0)+(n,(O)+~Z(O))U+ll~(O)U(U) (AlO) 

The tc mtal number of moles in the control volume can now 
be calculated by adding the numbers n, 

n(u)=~n,(u)=n(O)(l+[X~(O)+X~(O)]U) (All) 
I. I 

Using the identities in Eqs. (A5), (A7)-(All) and the 
following notatiou 

X,(O) 
*‘=x,(o) 

b,x,m +x2(0) =, +. 
X,(O) 

II 

b(u)=~+(x,(o)+x2(0))~ C.412) 
The mole fractions in Eq. (AS) can be written as 

+(u). 

$(a) 



X4(u) =X,(O) l++u) ( #l(u) (A131 

We assume that the water-gas shift reaction in the MCFC 
is in equilibrium throughout the cell. Using the identities in 
Eq. (A3) or Eq. (A12), theequilibriumconstant Kfor to the 
reverse shift reaction can be rewritten as, respectively 

K,P*,&(O)uO) K2(u)Kx(u) --=- 
PIP.4 x,(wuo) X,(u)Xdu) 

K=a, 

WQ 

Substitution of the expressions for the mole fractions 
(Eq. (A 13)) into the equilibrium condition yields 

(l-u) l+$(br-u) 
( 1 

= I-$bu-u) 
( x 

I+;(bu+u) 
1 

(A14) 

Solving Eq. (A14) for u(u) and using the equilibrium con- 
dition again, we find 

b 
u(u) =d+-u 

2(1-K) 

(O<K< I) t.415) 
where the trivial condition v(O) =O is satisfied and d is a 
constant defined hy 

d= 
I+al+K(a,+a,) 

2(1-K) 

Using Eqs. (A13) the Nemst Eq. (AJ). for zero oxidant 
utilization, can finally be rewritten in terms of u 

V,(r)=V.,(O)+g 
[! 

In I--$bu-U(U)) 
) 

+ln+(u) 

-I 
4 

l+-$bu-u(u)) -In I+-!$bu+u(u)) 
1 ( 11 (‘416) 

utilizing for &J(U) and u(u) the expressions given by Eqs. 
(A12) and (AU). respectively. 

In an aaalogous way. the obtained expression for V,(u) 
can be extended to an expression that also accounts for the 
utilization of oxidant. However, this latter step is also 
described in Ref. [4] and has been omitted in this paper. 

A. 1. Nota bene 

Fig. 9 shows an example of the reaction coordinate u(u) 
for the conversion of CO by the shill reaction. For small 

values of the fuel utilization, CO is produced from the reverse 
shift reaction, while when the hydrogen partial pressure 
becomes low, the shift reaction evolves towards the decom- 
position of the produced CO. The value of u> 0 for which u 
is quaI lo zero is obtained by setting o =0 in Eq. (A14) and 
solving the result for u 

“~*_(~+~~K)x~(0)+x,(0) =) u ( u ) = o  

X,(O) +xm 
This value is exact!y 0.5 for the standard gas compositions 
(see Table 2) and K=0_5. 

Appendix B. Cell voltage as a ffinctloa of the tot& 
olillzatioa 

In Eq. ( 15) the cell voltage v*,,, in the solution of the 
analytical cell model was written as the averaee value of the 

due to the q’uasi-ohmi resistance, r. In the same way Eq. 
(15) was derived, but starting with the ODE in the BVP. it 
can be shown rhar the cell voltage I’_,, in Section 2 can be 
written as 

In Section 4.1. it was shown (see Fig. 3) that the initial 
dip in the Nemst equation has a very small influence on the 
current distribution inside the cell. Hence, at normal opera- 
tion, the second integral in Eq. (A17) can still be approxi- 
mated using a constant (zero-order) or linear (t&t-order) 
approximation for the current distribution inside thecell. just 
as in the reduction of Eq. (IS). Using the first-orderapprox- 
imation. Eq. (Al7) can be reduced to 
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f&t-order approximation (.418) 

Assuming that v*,(u), see Section 3, is an accurate approx- 

imation of V,(u) for values of u in the interval (u*,u,), we 
setV,(u) inE!q. (-418) equaltol’*,(u) forvaluesofu>u*. 
In this way we obtain the following expression for the cell 

voltage 

(Al9) 

w&e C is the surface between the initial dip in the equilib- 

rium potential and the linear fit v*,(u) 

I,* 

C= [V,(u)-V,:(u)ldu 
I 
0 

The approximation in Eq. (Al9) is also valid for values 

of u, <u*, as long as v”,(u) is an accurate approximation of 

V_,,(u) for values of u in the interval (~,a*). Hence, Eq. 
(Al9) is valid for values of u, in the interval for wilich the 

linear approximation Fw( u) is accurate. 
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